Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Lance Miller

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Euclid
Lance.Miller@physics.ox.ac.uk
  • About
  • Publications

Size magnification as a complement to cosmic shear

Monthly Notices of the Royal Astronomical Society 430:4 (2013) 2844-2853

Authors:

B Casaponsa, AF Heavens, TD Kitching, L Miller, RB Barreiro, E Martínez-González

Abstract:

We investigate the extent to which cosmic size magnification may be used to complement cosmic shear in weak gravitational lensing surveys, with a view to obtaining high-precision estimates of cosmological parameters. Using simulated galaxy images, we find that unbiased estimation of the convergence field is possible using galaxies with angular sizes larger than the point spread function (PSF) and signal-to-noise ratio in excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear, and it is subject to different systematic effects. Application to ground-based data will be challenging, with relatively large empirical corrections required to account for the fact that many galaxiesare smaller than the PSF, but for space-based data with 0.1-0.2 arcsec resolution, the size distribution of galaxies brighter than i≃24 is almost ideal for accurate estimation of cosmic size magnification. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 2200-2220

Authors:

M Kilbinger, L Fu, C Heymans, F Simpson, J Benjamin, T Erben, J Harnois-Déraps, H Hoekstra, H Hildebrandt, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, K Benabed, C Bonnett, J Coupon, MJ Hudson, K Kuijken, B Rowe, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using nonlinear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain Σ8(Ωm/0.27)0.6 = 0.79 ± 0.03. We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ωm = 0.283 ± 0.010 and Σ8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ωm = 0.27 ± 0.03, Σ8 = 0.83 ± 0.04, w0 = -1.10 ± 0.15 and Ωk = 0.006+0.006-0.004. We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

CFHTLenS: Higher order galaxy-mass correlations probed by galaxy-galaxy-galaxy lensing

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 2476-2498

Authors:

P Simon, T Erben, P Schneider, C Heymans, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, C Bonnett, J Coupon, L Fu, MJ Hudson, K Kuijken, BTP Rowe, T Schrabback, E Semboloni, M Velander

Abstract:

We present the first direct measurement of the galaxy-matter bispectrum as a function of galaxy luminosity, stellar mass and type of spectral energy distribution (SED). Our analysis uses a galaxy-galaxy-galaxy lensing technique (G3L), on angular scales between 9 arcsec and 50 arcmin, to quantify (i) the excess surface mass density around galaxy pairs (excess mass hereafter) and (ii) the excess shear-shear correlations around single galaxies, both of which yield a measure of two types of galaxy-matter bispectra. We apply our method to the state-of-the-art Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), spanning 154 square degrees. This survey allows us to detect a significant change of the bispectra with lens properties. Measurements for lens populations with distinct redshift distributions become comparable by a newly devised normalization technique. That will also aid future comparisons to other surveys or simulations. A significant dependence of the normalized G3L statistics on luminosity within-23=Mr=-18 and stellarmass within 5×109M⊙ =M* <2×1011M⊙ is found (h = 0.73). Both bispectra exhibit a stronger signal for more luminous lenses or those with higher stellar mass (up to a factor of 2-3). This is accompanied by a steeper equilateral bispectrum for more luminous or higher stellar mass lenses for the excess mass. Importantly, we find the excess mass to be very sensitive to galaxy type as recently predicted with semianalytic galaxy models: luminous (Mr < -21) late-type galaxies show no detectable signal, while all excess mass detected for luminous galaxies seems to be associated with early-type galaxies. We also present the first observational constraints on third-order stochastic galaxy biasing parameters. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

The Suzaku view of highly ionized outflows in AGN - I. Statistical detection and global absorber properties

Monthly Notices of the Royal Astronomical Society 430:1 (2013) 60-80

Authors:

J Gofford, JN Reeves, F Tombesi, V Braito, TJ Turner, L Miller, M Cappi

Abstract:

We present the results of a new spectroscopic study of Fe K-band absorption in active galactic nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Heα and/or Fe XXVI Lyα absorption lines in a large sample of 51 Type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find that statistically significant absorption is detected at E ≳ 6.7 keV in 20/51 sources at the PMC ≥ 95 per cent level, which corresponds to ~40 per cent of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available X-ray imaging spectrometer detectors, which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Heα and Fe XXVI Lyα at a common velocity shift. From xstar fitting the mean column density and ionization parameter for the Fe K absorption components are log (NH/cm-2) ≈ 23 and log (ξ/erg cm s-1) ≈ 4.5, respectively. Measured outflow velocities span a continuous range from <1500 km s-1 up to ~100 000 km s-1, with mean and median values of ~0.1 c and ~0.056 c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly ionized circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

Monthly Notices of the Royal Astronomical Society 429:4 (2013) 2858-2880

Authors:

L Miller, C Heymans, TD Kitching, L van Waerbeke, T Erben, H Hildebrandt, H Hoekstra, Y Mellier, BTP Rowe, J Coupon, JP Dietrich, L Fu, J Harnois-D́eraps, MJ Hudson, M Kilbinger, K Kuijken, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB < 24.7, for galaxies with signal-to-noise ratio νSN ( 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet