Modeling the FeK line profiles in type i active galactic nuclei with a compton-thick disk wind
Astrophysical Journal 752:2 (2012)
Abstract:
We have modeled a small sample of Seyfert galaxies that were previously identified as having simple X-ray spectra with little intrinsic absorption. The sources in this sample all contain moderately broad components of FeK-shell emission and are ideal candidates for testing the applicability of a Compton-thick accretion disk wind model to active galactic nucleus (AGN) emission components. Viewing angles through the wind allow the observer to see the absorption signature of the gas, whereas face-on viewing angles allow the observer to see the scattered light from the wind. We find that the FeK emission line profiles are well described with a model of a Compton-thick accretion disk wind of solar abundances, arising tens to hundreds of gravitational radii from the central black hole. Further, the fits require a neutral component of FeKα emission that is too narrow to arise from the inner part of the wind, and likely comes from a more distant reprocessing region. Our study demonstrates that a Compton-thick wind can have a profound effect on the observed X-ray spectrum of an AGN, even when the system is not viewed through the flow. © 2012. The American Astronomical Society. All rights reserved..Observations of outflowing ultraviolet absorbers in NGC4051 with the cosmic origins spectrograph
Astrophysical Journal 751:2 (2012)
Abstract:
We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations of the narrow-line Seyfert 1 galaxy NGC4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph (STIS). None of the absorption components showed evidence for changes in column density or profile within the 10 yr between the STIS and COS observations, which we interpret as evidence of (1) saturation, for the stronger components, or (2) very low densities, i.e., n H < 1 cm-3, for the weaker components. After applying a +200 km s-1 offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5, and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass-loss rate is dominated by high-ionization gas which lacks a significant UV footprint. © 2012. The American Astronomical Society. All rights reserved..X-ray signatures of circumnuclear gas in AGN
AIP Conference Proceedings 1427 (2012) 165-172
Abstract:
X-ray spectra of AGN are complex. X-ray absorption and emission features trace gas covering a wide range of column densities and ionization states. High resolution spectra show the absorbing gas to be outflowing, perhaps in the form of an accretion disk wind. The absorbing complex shapes the form of the X-ray spectrum while X-ray reverberation and absorption changes explain the spectral and timing behaviour of AGN. We discuss recent progress, highlighting some new results and reviewing the implications that can be drawn from the data. © 2012 American Institute of Physics.CFHTLenS: Improving the quality of photometric redshifts with precision photometry
Monthly Notices of the Royal Astronomical Society 421:3 (2012) 2355-2367
Abstract:
Here we present the results of various approaches to measure accurate colours and photometric redshifts (photo-z) from wide-field imaging data. We use data from the Canada-France-Hawaii Telescope Legacy Survey which have been re-processed by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) team in order to carry out a number of weak gravitational lensing studies. An emphasis is put on the correction of systematic effects in the photo-z arising from the different point spread functions (PSFs) in the five optical bands. Different ways of correcting these effects are discussed and the resulting photo-z accuracies are quantified by comparing the photo-z to large spectroscopic redshift (spec-z) data sets. Careful homogenization of the PSF between bands leads to increased overall accuracy of photo-z. The gain is particularly pronounced at fainter magnitudes where galaxies are smaller and flux measurements are affected more by PSF effects. We discuss ways of defining more secure subsamples of galaxies as well as a shape- and colour-based star-galaxy separation method, and we present redshift distributions for different magnitude limits. We also study possible re-calibrations of the photometric zero-points (ZPs) with the help of galaxies with known spec-z. We find that if PSF effects are properly taken into account, a re-calibration of the ZPs becomes much less important suggesting that previous such re-calibrations described in the literature could in fact be mostly corrections for PSF effects rather than corrections for real inaccuracies in the ZPs. The implications of this finding for future surveys like the Kilo Degree Survey (KiDS), Dark Energy Survey (DES), Large Synoptic Survey Telescope or Euclid are mixed. On the one hand, ZP re-calibrations with spec-z values might not be as accurate as previously thought. On the other hand, careful PSF homogenization might provide a way out and yield accurate, homogeneous photometry without the need for full spectroscopic coverage. This is the first paper in a series describing the technical aspects of CFHTLenS. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.The impact of high spatial frequency atmospheric distortions on weak-lensing measurements
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 421:1 (2012) 381-389