Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Lance Miller

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Euclid
Lance.Miller@physics.ox.ac.uk
  • About
  • Publications

Erratum: On the efficiency of production of the Fe Kα emission line in neutral matter

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 415:4 (2011) 3966-3967

Authors:

T Yaqoob, KD Murphy, L Miller, TJ Turner
More details from the publisher

X-ray reverberation in NLS1

ArXiv 1106.3648 (2011)

Authors:

L Miller, TJ Turner

Abstract:

Reverberation from scattering material around the black hole in active galactic nuclei is expected to produce a characteristic signature in a Fourier analysis of the time delays between directly-viewed continuum emission and the scattered light. Narrow-line Seyfert 1 galaxies (NLS1) are highly variable at X-ray energies, and are ideal candidates for the detection of X-ray reverberation. We show new analysis of a small sample of NLS1 that clearly shows the expected time-delay signature, providing strong evidence for the existence of a high covering fraction of scattering and absorbing material a few tens to hundreds of gravitational radii from the black hole. We also show that an alternative interpretation of time delays in the NLS1 1H0707-495, as arising about one gravitational radius from the black hole, is strongly disfavoured in an analysis of the energy-dependence of the time delays.
Details from ArXiV

X-ray characteristics of NGC3516: A view through the complex absorber

Astrophysical Journal 733:1 (2011)

Authors:

TJ Turner, L Miller, SB Kraemer, JN Reeves

Abstract:

We consider new Suzaku data for NGC3516 taken during 2009 along with other recent X-ray observations of the source. The cumulative characteristics of NGC3516 cannot be explained without invoking changes in the line-of-sight absorption. Contrary to many other well-studied Seyfert galaxies, NGC3516 does not show a positive lag of hard X-ray photons relative to soft photons over the timescales sampled. In the context of reverberation models for the X-ray lags, the lack of such a signal in NGC3516 is consistent with flux variations being dominated by absorption changes. The lack of any reverberation signal in such a highly variable source disfavors intrinsic continuum variability in this case. Instead, the colorless flux variations observed at high flux states for NGC3516 are suggested to be a consequence of Compton-thick clumps of gas crossing the line of sight. © 2011. The American Astronomical Society. All rights reserved..
More details from the publisher

Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

Monthly Notices of the Royal Astronomical Society (2011)

Authors:

AP Lobban, JN Reeves, L Miller, TJ Turner, V Braito, SB Kraemer, DM Crenshaw

Abstract:

We present the results of a deep 300ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from Ovii and Neix) plus high-ionization L-shell transitions from Fexvii to Fexxii and lower ionization inner-shell lines (e.g. Ovi). Modelling the data with xstar requires four distinct ionization zones for the gas, all outflowing with velocities < 1000kms -1 . A selection of the strongest emission/absorption lines appear to be resolved with full width at half-maximum (FWHM) of ∼600kms -1 . We also present the results from a quasi-simultaneous 350ks Suzaku observation of NGC 4051 where the X-ray Imaging Spectrometer (XIS) spectrum reveals strong evidence for blueshifted absorption lines at ∼6.8 and ∼7.1keV, consistent with previous findings. Modelling with xstar suggests that this is the signature of a highly ionized, high-velocity outflow (logξ= 4.1 +0.2 -0.1 ; v out ∼-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission. © 2011 The Authors. Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
Details from ORA

3D photometric cosmic shear

Monthly Notices of the Royal Astronomical Society 413:4 (2011) 2923-2934

Authors:

TD Kitching, AF Heavens, L Miller

Abstract:

Here we present a number of improvements to weak lensing 3D power spectrum analysis, 3D cosmic shear, that uses the shape and redshift information of every galaxy to constrain cosmological parameters. We show how photometric redshift probability distributions for individual galaxies can be directly included in this statistic with no averaging. We also include the Limber approximation, considerably simplifying full 3D cosmic shear analysis, and we investigate its range of applicability. Finally we show the relationship between weak lensing tomography and the 3D cosmic shear field itself; the steps connecting them being the Limber approximation, a harmonic-space transform and a discretization in wavenumber. Each method has its advantages; 3D cosmic shear analysis allows straightforward inclusion of all relevant modes, thus ensuring minimum error bars, and direct control of the range of physical wavenumbers probed, to avoid the uncertain highly non-linear regime. On the other hand, tomography is more convenient for checking systematics through direct investigation of the redshift dependence of the signal. Finally, for tomography, we suggest that the angular modes probed should be redshift dependent, to recover some of the 3D advantages. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet