Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Beatriz Monge-Sanz

Senior Researcher

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Earth Observation Data Group
beatriz.monge-sanz@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room Room 111
  • About
  • MPhys projects
  • Publications

A stratospheric prognostic ozone for seamless Earth System Models: performance, impacts and future

Atmospheric Chemistry and Physics European Geosciences Union 22:7 (2022) 4277-4302

Authors:

Beatriz Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley Gray, Robin Hogan, Luke Jones, Linus Magnusson, Inna Politchtchouk, Theodore Shepherd, Nils Wedi, Antje Weisheimer

Abstract:

We have implemented a new stratospheric ozone model in the European Centre for Medium-Range Weather Forecasts (ECMWF) system and tested its performance for different timescales to assess the impact of stratospheric ozone on meteorological fields. We have used the new ozone model to provide prognostic ozone in medium-range and long-range (seasonal) experiments, showing the feasibility of this ozone scheme for a seamless numerical weather prediction (NWP) modelling approach. We find that the stratospheric ozone distribution provided by the new scheme in ECMWF forecast experiments is in very good agreement with observations, even for unusual meteorological conditions such as Arctic stratospheric sudden warmings (SSWs) and Antarctic polar vortex events like the vortex split of year 2002. To assess the impact it has on meteorological variables, we have performed experiments in which the prognostic ozone is interactive with radiation. The new scheme provides a realistic ozone field able to improve the description of the stratosphere in the ECMWF system, as we find clear reductions of biases in the stratospheric forecast temperature. The seasonality of the Southern Hemisphere polar vortex is also significantly improved when using the new ozone model. In medium-range simulations we also find improvements in high-latitude tropospheric winds during the SSW event considered in this study. In long-range simulations, the use of the new ozone model leads to an increase in the correlation of the winter North Atlantic Oscillation (NAO) index with respect to ERA-Interim and an increase in the signal-to-noise ratio over the North Atlantic sector. In our study we show that by improving the description of the stratospheric ozone in the ECMWF system, the stratosphere–troposphere coupling improves. This highlights the potential benefits of this new ozone model to exploit stratospheric sources of predictability and improve weather predictions over Europe on a range of timescales.
More details from the publisher
Details from ORA
More details

Results from a new linear O3 scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM

Atmospheric Chemistry and Physics Copernicus Publications 11:3 (2011) 1227-1242

Authors:

BM Monge-Sanz, MP Chipperfield, D Cariolle, W Feng
More details from the publisher

Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR

Atmospheric Chemistry and Physics Copernicus Publications 24:13 (2024) 7873-7898

Authors:

Masatomo Fujiwara, Patrick Martineau, Jonathon S Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M Davis, Thomas Birner, Beatriz M Monge-Sanz
More details from the publisher

Global warming may be behind an increase in the frequency and intensity of cold spells

The Conversation, 2024

Authors:

B. Monge-Sanz

Abstract:

Full PDF text

Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR

EGUsphere Atmospheric Chemistry and Physics, 2023

Authors:

Fujiwara, M., Martineau, P., Wright, J. S., Abalos, M., Šácha, P., Kawatani, Y., Davis, S. M., Birner, T., and
Monge-Sanz, B. M.

Abstract:

A 30-year (1980–2010) climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations is constructed by using four global atmospheric reanalyses, MERRA-2, JRA-55, ERA-Interim, and CFSR. Both the reanalysis ensemble mean (REM) and the differences of each reanalysis from the REM are investigated in the latitude-pressure domain for December-January-February and for June-July-August. For the REM investigation, two residual vertical velocities (the original one and one evaluated from residual meridional velocity) and two mass streamfunctions (from meridional and vertical velocities) are compared, and longwave (LW) and shortwave (SW) radiative heatings are also shown and discussed. For the TEM equations, the residual terms are also calculated and investigated for their potential usefulness, as the residual term for the momentum equation should include the effects of parameterised processes such gravity waves, while that for the thermodynamic equation should indicate the analysis increment. Inter-reanalysis differences are investigated for the mass streamfunction, LW and SW heatings, the two major terms of the TEM momentum equation (the Coriolis term and the Elliassen-Palm flux divergence term), and the two major terms of the TEM thermodynamic equation (the vertical temperature advection term and the total diabatic heating term). The spread among reanalysis TEM momentum balance terms is around 10 % in Northern-Hemisphere winter and up to 50 % in Southern-Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are found in the vertical advection, which does not show a structure consistent with the differences in heatings. The results shown in this paper provide basic information on the degree of agreement among recent reanalyses in the stratosphere and in the upper troposphere in the TEM framework.
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet