Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Moon-Sun Nam

Departmental Lecturer

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
moon-sun.nam@physics.ox.ac.uk
Telephone: 01865 (2)82192
Clarendon Laboratory, room ,254,265,165
  • About
  • Publications

Surface acoustic wave devices on bulk ZnO crystals at low temperature

Applied Physics Letters AIP Publishing 106:6 (2015) 063509-063509

Authors:

EB Magnusson, BH Williams, R Manenti, M-S Nam, A Nersisyan, MJ Peterer, Arzhang Ardavan, Peter Leek

Abstract:

Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of λ = 4 and 6 μm and a one-port resonator at a wavelength of λ = 1.6 μm. We find that the SAW velocity is temperature dependent, reaching v ≈ 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ≈ 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Superconducting fluctuations in organic molecular metals enhanced by Mott criticality

(2013)

Authors:

M Nam, C Meziere, B Batail, A Ardavan
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Fluctuating superconductivity in organic molecular metals close to the Mott transition.

Nature 449:7162 (2007) 584-587

Authors:

Moon-Sun Nam, Arzhang Ardavan, Stephen J Blundell, John A Schlueter

Abstract:

On cooling through the transition temperature T(c) of a conventional superconductor, an energy gap develops as the normal-state charge carriers form Cooper pairs; these pairs form a phase-coherent condensate that exhibits the well-known signatures of superconductivity: zero resistivity and the expulsion of magnetic flux (the Meissner effect). However, in many unconventional superconductors, the formation of the energy gap is not coincident with the formation of the phase-coherent superfluid. Instead, at temperatures above the critical temperature a range of unusual properties, collectively known as 'pseudogap phenomena', are observed. Here we argue that a key pseudogap phenomenon-fluctuating superconductivity occurring substantially above the transition temperature-could be induced by the proximity of a Mott-insulating state. The Mott-insulating state in the kappa-(BEDT-TTF)2X organic molecular metals can be tuned, without doping, through superconductivity into a normal metallic state as a function of the parameter t/U, where t is the tight-binding transfer integral characterizing the metallic bandwidth and U is the on-site Coulomb repulsion. By exploiting a particularly sensitive probe of superconducting fluctuations, the vortex-Nernst effect, we find that a fluctuating regime develops as t/U decreases and the role of Coulomb correlations increases.
More details from the publisher
More details

Dissipation in the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2

PHYSICAL REVIEW B 76:1 (2007) ARTN 014506

Authors:

Liang Yin, Moon-Sun Nam, James G Analytis, Stephen J Blundell, Arzhang Ardavan, John A Schlueter, Takahiko Sasaki
More details from the publisher
Details from ArXiV

Magnetothermoelectric effects in (TMTSF)2CIO4

PHYSICAL REVIEW B 74:7 (2006) ARTN 073105

Authors:

Moon-Sun Nam, Arzhang Ardavan, Weida Wu, Paul M Chaikin
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet