Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Rahul Nambiar

Graduate Student

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
rahul.nambiar@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

Interdiffusion control in sequentially evaporated organic–inorganic perovskite solar cells

R. A. Nambiar, D. P. McMeekin, M. K. Czenry, J. A. Smith, M. Taddei, P. Caprioglio, A. Kumar, B. W. Putland, J. Wang, K. A. Elmestekawy, A. Dasgupta, S. Seo, M. G. Christoforo, J. Yao, D. J. Graham, L. M. Herz, D. Ginger and H. J. Snaith, EES Solar, 2025,

Authors:

Rahul A. Nambiar, David P. McMeekin, Manuel Kober Czenry, Joel A. Smith, Margherita Taddei, Pietro Caprioglio,Amit Kumar, Benjamin W. Putland, Junke Wang, Karim A. Elmestekawy, Akash Dasgupta, Seongrok Seo, M. Greyson Christoforo, Jin Yao, Daniel J. Graham, Laura M. Herz, David Ginger, Henry J. Snaith.

Abstract:

Vacuum deposition of metal halide perovskite is a scalable and adaptable method. In this study, we adopt sequential evaporation to form the perovskite layer and reveal how the relative humidity during the annealing step, impacts its crystallinity and the photoluminescence quantum yield (PLQY). By controlling the humidity, we achieved a significant enhancement of 50 times in PLQY from 0.12% to 6%. This improvement corresponds to an increase in implied open-circuit voltage (Voc) of over 100 meV. We investigate the origin of this enhanced PLQY by combining structural, chemical and spectroscopic methods. Our results show that annealing in a controlled humid environment improves the organic and inorganic halides' interdiffusion throughout the bulk, which in turn significantly reduces non-radiative recombination both in the bulk and at the interfaces with the charge transport layers, which enhanced both the attainable open-circuit voltage and the charge carrier diffusion length. We further demonstrate that the enhanced intermixing results in fully vacuum-deposited FA0.85Cs0.15Pb(IxCl1−x)3 p-i-n perovskite solar cells (PSCs) with a maximum power point tracked efficiency of 21.0% under simulated air mass (AM) 1.5G 100 mW cm−2 irradiance. Additionally, controlled humidity annealed PSCs exhibit superior stability when aged under full spectrum simulated solar illumination at 85 °C and in open-circuit conditions.
More details from the publisher
Full PDF text

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet