Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Robin Nicholas

Emeriti

Sub department

  • Condensed Matter Physics
Robin.Nicholas@physics.ox.ac.uk
Telephone: 01865 (2)72250
Clarendon Laboratory, room 148
  • About
  • Publications

Stark magnetophonon resonances in Wannier-Stark localized InAs/GaSb superlattices

PHYSICAL REVIEW B 74:12 (2006) ARTN 121306

Authors:

RS Deacon, RJ Nicholas, PA Shields
More details from the publisher

The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes

CARBON 44:13 (2006) 2752-2757

Authors:

Lain-Jong Li, M Glerup, AN Khlobystov, JG Wiltshire, J-L Sauvajol, RA Tavlor, RJ Nicholas
More details from the publisher

Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes

Physical Review B - Condensed Matter and Materials Physics 72:20 (2005)

Authors:

JG Wiltshire, LJ Li, LM Herz, RJ Nicholas, M Glerup, JL Sauvajol, AN Khlobystov

Abstract:

A change in the relative abundance of single-walled carbon nanotubes, due to the presence of both nitrogen and boron during synthesis, has been identified through Raman and absorption spectroscopy. Raman spectroscopy shows that for two specific branches boron mediates the growth of smaller-diameter zigzag or near-zigzag nanotubes. We combine our experimental results with an improved Kataura model to identify two of the preferentially grown species as (16,0) and (14,1). © 2005 The American Physical Society.
More details from the publisher
More details

Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes.

Nat Mater 4:6 (2005) 481-485

Authors:

Lain-Jong Li, AN Khlobystov, JG Wiltshire, GAD Briggs, RJ Nicholas

Abstract:

Encapsulation of organic molecules in carbon nanotubes has opened a new route for the fabrication of hybrid nanostructures. Here we show that diameter-selective encapsulation of two metallocene compounds bis(cyclopentadienyl) cobalt and bis(ethylcyclopentadienyl) cobalt has been observed in single-walled carbon nanotubes. In particular, bis(cyclopentadienyl) cobalt is observed to fill only nanotubes of one specific diameter. Electron transfer from the cobalt ions to the nanotubes has been directly observed through a change in the charge state of the encapsulated molecules. The filling of the tubes is found to induce a red-shift of the photoluminescence emission, which is attributed to the formation of localized impurity states below the conduction band of the nanotubes.
More details from the publisher
More details

Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone

Nanotechnology 16:5 (2005)

Authors:

LJ Li, RJ Nicholas, CY Chen, RC Darton, SC Baker

Abstract:

Single-walled carbon nanotubes (SWCNTs) have been dispersed with three types of amphiphilic materials in aqueous solutions: (i) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (ii) a cyclic lipopeptide biosurfactant, surfactin, and (iii) a water-soluble polymer, polyvinylpyrrolidone (PVP). Solution photoluminescence (PL) studies suggest that SDS wrapping is very sensitive to the temperature whereas the other two give relatively robust wrapping around the SWCNTs. Low temperature PL spectra from both surfactin and PVP dispersed SWCNTs show that peak shifts are strongly dependent on their chiralities, which can be explained by the bandgap modulations with the environmental strain. The uniaxial and torsional strains deduced from their bandgap shifts were similar, indicating the strains are mainly due to the different rates of thermal expansion in SWCNTs and ice. © 2005 IOP Publishing Ltd.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet