Polaronic Mass Enhancement and Polaronic Excitons in Metal Halide Perovskites.
Abstract:
In metal halide perovskites, the complex dielectric screening together with low energy of phonon modes leads to non-negligible Fröhlich coupling. While this feature of perovskites has already been used to explain some of the puzzling aspects of carrier transport in these materials, the possible impact of polaronic effects on the optical response, especially excitonic properties, is much less explored. Here, with the use of magneto-optical spectroscopy, we revealed the non-hydrogenic character of the excitons in metal halide perovskites, resulting from the pronounced Fröhlich coupling. Our results can be well described by the polaronic-exciton picture where electron and hole interactions are no longer described by a Coulomb potential. Furthermore, we show experimental evidence that the carrier-phonon interaction leads to the enhancement of the carrier's effective mass. Notably, our measurements reveal a pronounced temperature dependence of the carrier's effective mass, which we attribute to a band structure renormalization induced by the population of low-energy phonon modes. This interpretation finds support in our first-principles calculations.Emissive brightening in molecular graphene nanoribbons by twilight states
Abstract:
Carbon nanomaterials are expected to be bright and efficient emitters, but structural disorder, intermolecular interactions and the intrinsic presence of dark states suppress their photoluminescence. Here, we study synthetically-made graphene nanoribbons with atomically precise edges and which are designed to suppress intermolecular interactions to demonstrate strong photoluminescence in both solutions and thin films. The resulting high spectral resolution reveals strong vibron-electron coupling from the radial-breathing-like mode of the ribbons. In addition, their cove-edge structure produces inter-valley mixing, which brightens conventionally-dark states to generate hitherto-unrecognised twilight states as predicted by theory. The coupling of these states to the nanoribbon phonon modes affects absorption and emission differently, suggesting a complex interaction with both Herzberg–Teller and Franck– Condon coupling present. Detailed understanding of the fundamental electronic processes governing the optical response will help the tailored chemical design of nanocarbon optical devices, via gap tuning and side-chain functionalisation.Direct observation of phase transitions between delta- and alpha-phase FAPbI 3 via defocused Raman spectroscopy
Abstract:
The ability to characterise perovskite phases non-destructively is key on the route to ensuring their long-term stability in operando. Raman spectroscopy holds the promise to play an important role in this task. Among all perovskites, formamidinium lead iodide (FAPbI3) has emerged as one of the most promising candidates for single-junction photovoltaic cells. However, Raman spectroscopy of FAPbI3 remains challenging as is evidenced by conflicting reports in the literature. Here, we demonstrate that due to the vulnerability of FAPbI3 to laser-induced degradation, the detected Raman spectrum depends strongly on the experimental conditions. This can lead to conflicting results and is revealed as the origin of discrepancies in the literature. We overcome this issue by deploying defocused Raman spectroscopy, preventing laser-induced damage to the sample and simultaneously improving the signal-to-noise ratio, allowing us to furthermore resolve much weaker Raman modes than was previously possible. We offer step-by-step instructions on how to apply this technique to a given spectrometer. Non-destructive characterisation of the FAPbI3 phases further enables us to quantify the phase stability of pristine FAPbI3 crystals and FAPbI3 grown with the high-performance additive methylenediammonium chloride (MDACl2). This shows that the neat crystals fully degrade within two weeks, whereas in samples grown with the additive only about 2% of the crystal bulk is in the δ-phase after 400 days. This establishes defocused Raman spectroscopy as a powerful tool for the characterisation of FAPbI3 and other perovskite materials.