Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Robbie Oliver (he/him)

Long Term Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
robert.oliver@physics.ox.ac.uk
Telephone: 01865 (2)82329
Robert Hooke Building, room G30
  • About
  • Publications

Synergistic surface modification of tin-lead perovskite solar cells

Advanced Materials Wiley 35:9 (2023) 2208320

Authors:

Shuaifeng Hu, Pei Zhao, Kyohei Nakano, Robert DJ Oliver, Jorge Pascual, Joel A Smith, Takumi Yamada, Minh Anh Truong, Richard Murdey, Nobutaka Shioya, Takeshi Hasegawa, Masahiro Ehara, Michael B Johnston, Keisuke Tajima, Yoshihiko Kanemitsu, Henry J Snaith, Atsushi Wakamiya

Abstract:

Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. Herein, we study the top surface treatment of mixed tin-lead (∼1.26 eV) halide perovskite films for p-i-n solar cells. We are able to promote charge extraction by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C<sub>60</sub> pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ∼92% of the radiative limit for the band gap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 hours of storage in N<sub>2</sub> and encapsulated cells retaining 90% efficiency after >450 hours of storage in air. Intriguingly, CPTA preferentially binds to Sn<sup>2+</sup> sites at film surface over Pb<sup>2+</sup> due to the energetically favoured exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and we use this knowledge to fabricate state-of-the-art solar cells.
More details from the publisher
Details from ORA
More details
More details

Thermally stable perovskite solar cells by all-vacuum deposition

ACS Applied Materials and Interfaces American Chemical Society 15:1 (2022) 772-781

Abstract:

Vacuum deposition is a solvent-free method suitable for growing thin films of metal halide perovskite (MHP) semiconductors. However, most reports of high-efficiency solar cells based on such vacuum-deposited MHP films incorporate solution-processed hole transport layers (HTLs), thereby complicating prospects of industrial upscaling and potentially affecting the overall device stability. In this work, we investigate organometallic copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) as alternative, low-cost, and durable HTLs in all-vacuum-deposited solvent-free formamidinium-cesium lead triodide [CH(NH2)2]0.83Cs0.17PbI3 (FACsPbI3) perovskite solar cells. We elucidate that the CuPc HTL, when employed in an “inverted” p–i–n solar cell configuration, attains a solar-to-electrical power conversion efficiency of up to 13.9%. Importantly, unencapsulated devices as large as 1 cm2 exhibited excellent long-term stability, demonstrating no observable degradation in efficiency after more than 5000 h in storage and 3700 h under 85 °C thermal stressing in N2 atmosphere.

More details from the publisher
Details from ORA
More details
More details
More details

Impact of hole-transport layer and interface passivation on halide segregation in mixed-halide perovskites

Advanced Functional Materials Wiley 32:41 (2022) 2204825

Authors:

Vincent JY Lim, Alexander J Knight, Robert DJ Oliver, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer ideal bandgaps for tandem solar cells, but photoinduced halide segregation compromises photovoltaic device performance. This study explores the influence of a hole-transport layer, necessary for a full device, by monitoring halide segregation through in situ, concurrent X-ray diffraction and photoluminescence measurements to disentangle compositional and optoelectronic changes. This work demonstrates that top coating FA0.83Cs0.17Pb(Br0.4I0.6)3 perovskite films with a poly(triaryl)amine (PTAA) hole-extraction layer surprisingly leads to suppression of halide segregation because photogenerated charge carriers are rapidly trapped at interfacial defects that do not drive halide segregation. However, the generation of iodide-enriched regions near the perovskite/PTAA interface enhances hole back-transfer from the PTAA layer through improved energy level offsets, increasing radiative recombination losses. It is further found that while passivation with a piperidinium salt slows halide segregation in perovskite films, the addition of a PTAA top-coating accelerates such effects, elucidating the specific nature of trap types that are able to drive the halide segregation process. This work highlights the importance of selective passivation techniques for achieving efficient and stable wide-bandgap perovskite photovoltaic devices.
More details from the publisher
Details from ORA
More details

Visualizing macroscopic inhomogeneities in perovskite solar cells

ACS Energy Letters American Chemical Society 7:7 (2022) 2311-2322

Authors:

Akash Dasgupta, Suhas Mahesh, Pietro Caprioglio, Yen-Hung Lin, Karl-Augustin Zaininger, Robert DJ Oliver, Philippe Holzhey, Suer Zhou, Melissa M McCarthy, Joel A Smith, Maximilian Frenzel, M Greyson Christoforo, James M Ball, Bernard Wenger, Henry J Snaith

Abstract:

Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm2). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of “charge collection quality”, measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.
More details from the publisher
Details from ORA
More details

Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules

Science American Association for the Advancement of Science 376:6594 (2022) 762-767

Authors:

Ke Xiao, Yen-Hung Lin, Mei Zhang, Robert DJ Oliver, Xi Wang, Zhou Liu, Xin Luo, Jia Li, Donny Lai, Haowen Luo, Renxing Lin, Jun Xu, Yi Hou, Henry J Snaith, Hairen Tan

Abstract:

Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free 1.8–electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal “diffusion barrier” is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of 21.7% with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet