Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The inside of the SNO+ experiment, showing the acrylic vessel, hold up/down ropes and PMTs. At this stage the vessel was nearly filled with scintillator.

Dr William Parker

Postdoctoral Research Assistant

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • SNO+
william.parker@physics.ox.ac.uk
  • About
  • Publications

Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295km

Physical Review D American Physical Society 99:7 (2019) 071103

Authors:

K Abe, R Akutsu, A Ali, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Awataguchi, Y Azuma, S Ban, M Barbi, GJ Barker, G Barr, C Barry, M Batkiewicz-Kwasniak, F Bench, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, C Bronner, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, D Coplowe, A Cudd, A Dabrowska, G De Rosa, T Dealtry

Abstract:

We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7(7.6)×10^20 protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3+1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin^2θ24 for the sterile neutrino mass splitting Δm^2v41<3×10^−3eV^2/c^4.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Measurement of the $ν_μ$ charged-current cross sections on water, hydrocarbon, iron, and their ratios with the T2K on-axis detectors

Authors:

K Abe, R Akutsu, A Ali, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Awataguchi, Y Azuma, S Ban, M Barbi, GJ Barker, G Barr, C Barry, M Batkiewicz-Kwasniak, F Bench, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondely, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, C Bronner, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulouy, J Coleman, G Collazuol, D Coplowe, A Cudd, A Dabrowska, GD Rosa, T Dealtry

Abstract:

We report a measurement of the flux-integrated $\nu_{\mu}$ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are $\sigma^{\rm{H_{2}O}}_{\rm{CC}}$ = (0.840$\pm 0.010$(stat.)$^{+0.10}_{-0.08}$(syst.))$\times$10$^{-38}$cm$^2$/nucleon, $\sigma^{\rm{CH}}_{\rm{CC}}$ = (0.817$\pm 0.007$(stat.)$^{+0.11}_{-0.08}$(syst.))$\times$10$^{-38}$cm$^2$/nucleon, and $\sigma^{\rm{Fe}}_{\rm{CC}}$ = (0.859$\pm 0.003$(stat.) $^{+0.12}_{-0.10}$(syst.))$\times$10$^{-38}$cm$^2$/nucleon respectively, for a restricted phase space of induced muons: $\theta_{\mu}<45^{\circ}$ and $p_{\mu}>$0.4 GeV/$c$ in the laboratory frame. The measured cross section ratios are ${\sigma^{\rm{H_{2}O}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}}$ = 1.028$\pm 0.016$(stat.)$\pm 0.053$(syst.), ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{H_{2}O}}_{\rm{CC}}}$ = 1.023$\pm 0.012$(stat.)$\pm 0.058$(syst.), and ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}}$ = 1.049$\pm 0.010$(stat.)$\pm 0.043$(syst.). These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.
More details from the publisher
Details from ArXiV

Measurements of $\barν_μ$ and $\barν_μ + ν_μ$ charged-current cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV

Prog Theor Exp Phys (2021)

Authors:

K Abe, N Akhlaq, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, T Arihara, Y Asada, Y Ashida, Et Atkin, Y Awataguchi, S Ban, M Barbi, Gj Barker, G Barr, D Barrow, C Barry, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, S Berkman, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, T Bonus, B Bourguille, Sb Boyd, D Brailsford, A Bravar, D Bravo Berguño, C Bronner, S Bron, A Bubak, M Buizza Avanzini, J Calcutt, T Campbell, S Cao, Sl Cartwright, Mg Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack

Abstract:

We report measurements of the flux-integrated $\bar{\nu}_\mu$ and $\bar{\nu}_\mu+\nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion nor proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. Absence of pions and protons in the detectable phase space of "$p_{\pi}>200~{\rm MeV}/c$ and $\theta_{\pi}<70^{\circ}$", and "$p_{\rm p}>600~{\rm MeV}/c$ and $\theta_{\rm p}<70^{\circ}$" is required. In this paper, both of the $\bar{\nu}_\mu$ cross-sections and $\bar{\nu}_\mu+\nu_\mu$ cross-sections on water and hydrocarbon targets, and their ratios are provided by using D'Agostini unfolding method. The results of the integrated $\bar{\nu}_\mu$ cross-section measurements over this phase space are $\sigma_{\rm H_{2}O}\,=\,(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)$. The $\bar{\nu}_\mu+\nu_\mu$ cross-section is $\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH}\,=\,0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)$.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet