Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The inside of the SNO+ experiment, showing the acrylic vessel, hold up/down ropes and PMTs. At this stage the vessel was nearly filled with scintillator.

Dr William Parker

Postdoctoral Research Assistant

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • SNO+
william.parker@physics.ox.ac.uk
  • About
  • Publications

Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber

Instruments MDPI 4:3 (2020) 21

Authors:

SB Jones, TS Nonnenmacher, E Atkin, GJ Barker, A Basharina-Freshville, C Betancourt, SB Boyd, D Brailsford, Z Chen-Wishart, L Cremonesi, A Deisting, A Dias, P Dunne, J Haigh, P Hamacher-Baumann, A Kaboth, A Korzenev, W Ma, P Mermod, M Mironova, J Monroe, R Nichol, J Nowak, W Parker, H Ritchie-Yates, S Roth, R Saakyan, N Serra, Y Shitov, J Steinmann, A Tarrant, MA Uchida, S Valder, AV Waldron, M Ward, MO Wascko
More details from the publisher

First measurement of the charged current (nu)over-bar(mu) double differential cross section on a water target without pions in the final state

Physical Review Letters American Physical Society 102:1 (2020) 12007

Authors:

K Abe, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Et Atkin, Y Awataguchi, S Ban, M Barbi, Gj Barker, G Barr, C Barry, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, S Berkman, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, Sb Boyd, D Brailsford, A Bravar, C Bronner, M Buizza Avanzini, J Calcutt, T Campbell, S Cao, Sl Cartwright, Mg Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, L Cook, D Coplowe, A Cudd, A Dabrowska

Abstract:

This paper reports the first differential measurement of the charged-current νμ interaction cross section on water with no pions in the final state. The unfolded flux-averaged measurement using the T2K off-axis near detector is given in double-differential bins of μ+ momentum and angle. The integrated cross section in a restricted phase space is σ =(1.11 ± 0.18)×10−38 cm2 per water molecule. Comparisons with several nuclear models are also presented.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K

PHYSICAL REVIEW D American Physical Society (APS) 101:11 (2020) ARTN 112004

Authors:

K Abe, N Akhlaq, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, T Arihara, Y Asada, Y Ashida, Et Atkin, Y Awataguchi, S Ban, M Barbi, Gj Barker, G Barr, D Barrow, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, L Berns, S Bhadra, S Bienstock, S Bolognesi, T Bonus, B Bourguille, Sb Boyd, A Bravar, D Bravo Berguno, C Bronner, S Bron, A Bubak, M Buizza Avanzini, T Campbell, S Cao, Sl Cartwright, Mg Catanesi, A Cervera, D Cherdack, N Chikuma, G Christodoulou, M Cicerchia, J Coleman, G Collazuol, L Cook, D Coplowe

Abstract:

© 2020 authors. Published by the American Physical Society. This paper reports the first simultaneous measurement of the double differential muon neutrino charged-current cross section on oxygen and carbon without pions in the final state as a function of the outgoing muon kinematics, made at the ND280 off-axis near detector of the T2K experiment. The ratio of the oxygen and carbon cross sections is also provided to help validate various models' ability to extrapolate between carbon and oxygen nuclear targets, as is required in T2K oscillation analyses. The data are taken using a neutrino beam with an energy spectrum peaked at 0.6 GeV. The extracted measurement is compared with the prediction from different Monte Carlo neutrino-nucleus interaction event generators, showing particular model separation for very forward-going muons. Overall, of the models tested, the result is best described using local Fermi gas descriptions of the nuclear ground state with RPA suppression.
More details from the publisher
More details
Details from ArXiV

First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K

PHYSICAL REVIEW D 101:11 (2020) ARTN 112001

Authors:

K Abe, N Akhlaq, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, T Arihara, Y Asada, Y Ashida, Et Atkin, Y Awataguchi, S Ban, M Barbi, Gj Barker, G Barr, D Barrow, C Barry, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, T Bonus, B Bourguille, Sb Boyd, D Brailsford, A Bravar, D Bravo Berguno, C Bronner, S Bron, A Bubak, M Buizza Avanzini, J Calcutt, T Campbell, S Cao, Sl Cartwright, Mg Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma

Abstract:

© 2020 authors. Published by the American Physical Society. This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8×1020 and 6.3×1020 protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference, and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects.
More details from the publisher
More details
Details from ArXiV

Search for electron antineutrino appearance in a long-baseline muon antineutrino beam

Physical Review Letters American Physical Society 124:16 (2020) 161802

Authors:

K Abe, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Asada, Y Ashida, ET Atkin, Y Awataguchi, S Ban, M Barbi, GJ Barker, G Barr, D Barrow, C Barry, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, S Berkman, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, DB Berguno, C Bronner, A Bubak, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol

Abstract:

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet