Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Jay Patel

Long Term Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
jay.patel@physics.ox.ac.uk
  • About
  • Publications

In-Operando Characterization of P-I-N Perovskite Solar Cells Under Reverse Bias

Institute of Electrical and Electronics Engineers (IEEE) 00 (2021) 1365-1367

Authors:

Isaac E Gould, Chuanxiao Xiao, Jay B Patel, Michael D McGehee
More details from the publisher
More details

Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations.

ACS energy letters 6:5 (2021) 2038-2047

Authors:

Taylor Moot, Jay B Patel, Gabriel McAndrews, Eli J Wolf, Daniel Morales, Isaac E Gould, Bryan A Rosales, Caleb C Boyd, Lance M Wheeler, Philip A Parilla, Steven W Johnston, Laura T Schelhas, Michael D McGehee, Joseph M Luther

Abstract:

Temperature coefficients for maximum power (T PCE), open circuit voltage (V OC), and short circuit current (J SC) are standard specifications included in data sheets for any commercially available photovoltaic module. To date, there has been little work on determining the T PCE for perovskite photovoltaics (PV). We fabricate perovskite solar cells with a T PCE of -0.08 rel %/°C and then disentangle the temperature-dependent effects of the perovskite absorber, contact layers, and interfaces by comparing different device architectures and using drift-diffusion modeling. A main factor contributing to the small T PCE of perovskites is their low intrinsic carrier concentrations with respect to Si and GaAs, which can be explained by its wider band gap. We demonstrate that the unique increase in E g with increasing temperatures seen for perovskites results in a reduction in J SC but positively influences V OC. The current limiting factors for the T PCE in perovskite PV are identified to originate from interfacial effects.
More details from the publisher
More details
More details

Limits to electrical mobility in lead-halide perovskite semiconductors

Journal of Physical Chemistry Letters American Chemical Society 12:14 (2021) 3607-3617

Authors:

Chelsea Xia, Jiali Peng, Samuel Poncé, Jay Patel, Adam Wright, Timothy W Crothers, Mathias Rothmann, Anna Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura Herz, Michael Johnston

Abstract:

Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior charge-carrier mobilities and longer diffusion lengths. Here we show that the electrical performance of polycrystalline films of metal-halide perovskites (MHPs) approaches that of single crystals at room temperature. Combining temperature-dependent terahertz conductivity measurements and ab initio calculations we uncover a complete picture of the origins of charge-carrier scattering in single crystals and polycrystalline films of CH3NH3PbI3. We show that Fröhlich scattering of charge carriers with multiple phonon modes is the dominant mechanism limiting mobility, with grain-boundary scattering further reducing mobility in polycrystalline films. We reconcile the large discrepancy in charge-carrier diffusion lengths between single crystals and films by considering photon reabsorption. Thus, polycrystalline films of MHPs offer great promise for devices beyond solar cells, including light-emitting diodes and modulators.
More details from the publisher
Details from ORA
More details
More details

Incorporating Electrochemical Halide Oxidation into Drift‐Diffusion Models to Explain Performance Losses in Perovskite Solar Cells under Prolonged Reverse Bias

Advanced Energy Materials Wiley 11:10 (2021)

Authors:

Luca Bertoluzzi, Jay B Patel, Kevin A Bush, Caleb C Boyd, Ross A Kerner, Brian C O'Regan, Michael D McGehee
More details from the publisher
More details

Halide segregation in mixed-halide perovskites: influence of A-site cations

ACS Energy Letters American Chemical Society 6:2 (2021) 799-808

Authors:

Alexander Knight, Anna Juliane Borchert, Robert DJ Oliver, Jay Patel, Paolo G Radaelli, Henry Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet