Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Matt Patterson

Visitor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
matthew.patterson@physics.ox.ac.uk
Telephone: 01865 (2)72912
Atmospheric Physics Clarendon Laboratory, room 206
  • About
  • Publications

Climate Models Struggle to Simulate Observed North Pacific Jet Trends, Even Accounting for Tropical Pacific Sea Surface Temperature Trends

Geophysical Research Letters American Geophysical Union (AGU) 52:4 (2025)

Authors:

Matthew Patterson, Christopher H O’Reilly
More details from the publisher
More details

Drivers of the ECMWF SEAS5 seasonal forecast for the hot and dry European summer of 2022

Quarterly Journal of the Royal Meteorological Society Wiley 150:765 (2024) 4969-4986

Authors:

Matthew Patterson, Daniel J Befort, Christopher H O'Reilly, Antje Weisheimer
More details from the publisher
More details

Seasonal prediction of UK mean and extreme winds

Quarterly Journal of the Royal Meteorological Society Wiley 149:757 (2023) 3477-3489

Authors:

Julia F Lockwood, Nicky Stringer, Katie R Hodge, Philip E Bett, Jeff Knight, Doug Smith, Adam A Scaife, Matthew Patterson, Nick Dunstone, Hazel E Thornton
More details from the publisher

Challenges with interpreting the impact of Atlantic Multidecadal Variability using SST-restoring experiments

npj Climate and Atmospheric Science Springer Nature 6:1 (2023) 14

Authors:

Christopher HH O'Reilly, Matthew Patterson, Jon Robson, Paul Arthur Monerie, Daniel Hodson, Yohan Ruprich-Robert

Abstract:

Climate model simulations that restore SSTs in the North Atlantic have been used to explore the climate impacts of Atlantic Multidecadal Variability (AMV). However, despite simulations and observations exhibiting similar North Atlantic SST anomalies, experiments with active SST-restoring in the Tropical North Atlantic exhibit strong positive surface heat-fluxes out of the ocean with warm SST anomalies, which is not replicated in other simulations or observations. The upward surface heat-fluxes that are systematically driven by the active SST-restoring in the Tropical North Atlantic are found to be crucial for generating a strong local precipitation response and the associated remote impact on the Pacific Walker circulation; these are both absent in other simulations. The results of this study strongly suggest that experiments employing SST-restoring (or prescribed SSTs) in the Tropical North Atlantic exaggerate the influence of the Atlantic on patterns of global climate anomalies and its role in recent multidecadal SST trends.
More details from the publisher
Details from ORA
More details

The role of Rossby waves in polar weather and climate

Weather and Climate Dynamics Copernicus Publications 4:1 (2023) 61-80

Authors:

Tim Woollings, Camillie Li, Marie Drouard, K Elmestekawy, C Mbengue, Matthew Patterson

Abstract:

Recent Arctic warming has fuelled interest in the weather and climate of the polar regions and how this interacts with lower latitudes. Several interesting theories of polar-midlatitude linkages involve Rossby wave propagation as a key process even though the meridional gradient in planetary vorticity, crucial for these waves, is weak at high latitudes. Here we review some basic theory and suggest that Rossby waves can indeed explain some features of polar variability, especially when relative vorticity gradients are present.

We suggest that large-scale polar flow can be conceptualised as a mix of geostrophic turbulence and Rossby wave propagation, as in the midlatitudes, but with the balance tipped further in favour of turbulent flow. Hence, isolated vortices often dominate but some wavelike features remain. As an example, quasi-stationary or weakly westward-propagating subpolar anomalies emerge from statistical analysis of observed data, and these are consistent with some role for wave propagation. The noted persistence of polar cyclones and anticyclones is attributed in part to the weakened effects of wave dispersion, the mechanism responsible for the decay of midlatitude anomalies in downstream development. We also suggest that the vortex-dominated nature of polar dynamics encourages the emergence of annular mode structures in principal component analyses of extratropical circulation.

Finally, we consider how Rossby waves may be triggered from high latitudes. The linear mechanisms known to balance localised heating at lower latitudes are shown to be less efficient in the polar regions. Instead, we suggest the direct response to sea ice loss often manifests as a heat low, with radiative cooling balancing the heating. If the relative vorticity gradient is favourable this does have the potential to trigger a Rossby wave response, although this will often be weak compared to waves forced from lower latitudes.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet