Modeling of warm dense hydrogen via explicit real-time electron dynamics: Electron transport properties
Physical Review E American Physical Society (APS) 111:4 (2025) 045208
Ionization calculations using classical molecular dynamics
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 111 (2025) 015204
Abstract:
By performing an ensemble of molecular dynamics simulations, the model-dependent ionization state is computed for strongly interacting systems self-consistently. This is accomplished through a free energy minimization framework based on the technique of thermodynamic integration. To illustrate the method, two simple models applicable to partially ionized hydrogen plasma are presented in which pair potentials are employed between ions and neutral particles. Within the models, electrons are either bound in the hydrogen ground state or distributed in a uniform charge-neutralizing background. Particular attention is given to the transition between atomic gas and ionized plasma, where the effect of neutral interactions is explored beyond commonly used models in the chemical picture. Furthermore, pressure ionization is observed when short-range repulsion effects are included between neutrals. The developed technique is general, and we discuss the applicability to a variety of molecular dynamics models for partially ionized warm dense matter.Ionization calculations using classical molecular dynamics
Physical Review E (statistical, nonlinear, biological, and soft matter physics) American Physical Society 111:1 (2025)
Modelling of warm dense hydrogen via explicit real time electron dynamics: electron transport properties
Physical Review E American Physical Society 110 (2024) 055205
Abstract:
We extract electron transport properties from atomistic simulations of a two-component plasma by mapping the long-wavelength behaviour to a two-fluid model. The mapping procedure is performed via Markov Chain Monte Carlo sampling over multiple spectra simultaneously. The free-electron dynamic structure factor and its properties have been investigated in the hydrodynamic formulation to justify its application to the long-wavelength behaviour of warm dense matter. We have applied this method to warm dense hydrogen modelled with wave packet molecular dynamics and showed that the inferred electron transport properties are in agreement with a variety of reference calculations, except for the electron viscosity, where a substantive decrease is observed when compared to classical models.Modelling of warm dense hydrogen via explicit real time electron dynamics: Electron transport properties
(2024)