MASS TRANSFER IN MIRA-TYPE BINARIES
BALTIC ASTRONOMY 21:1-2 (2012) 88-96
Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.
Nature 480:7377 (2011) 348-350
Abstract:
Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere
Monthly Notices of the Royal Astronomical Society 418:2 (2011) 747-758
Abstract:
PTF10ops is a Type Ia supernova (SN Ia), whose light curve and spectral properties place it outside the current SN Ia subtype classifications. Its spectra display the characteristic lines of subluminous SNe Ia, but it has a normal-width light curve with a long rise time, typical of normal-luminosity SNe Ia. The early-time optical spectra of PTF10ops were modelled using a spectral fitting code and found to have all the lines typically seen in subluminous SNe Ia, without the need to invoke more uncommon elements. The host galaxy environment of PTF10ops is also unusual with no galaxy detected at the position of the SN down to an absolute limiting magnitude of r≥-12.0mag, but a very massive galaxy is present at a separation of ∼148kpc and at the same redshift as suggested by the SN spectral features. The progenitor of PTF10ops is most likely a very old star, possibly in a low-metallicity environment, which affects its explosion mechanism and observational characteristics. PTF10ops does not easily fit into any of the current models of either subluminous or normal SN Ia progenitor channels. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.Two populations of X-ray pulsars produced by two types of supernova.
Nature 479:7373 (2011) 372-375
Abstract:
Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained.Supernova 2011fe from an Exploding Carbon-Oxygen White Dwarf Star
ArXiv 1110.6201 (2011)