Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Philipp Podsiadlowski

Emeriti Professor

Sub department

  • Astrophysics
philipp.podsiadlowski@seh.ox.ac.uk
Denys Wilkinson Building
  • About
  • Publications

No surviving stellar companion for Cassiopeia A

Authors:

WE Kerzendorf, T Do, SED Mink, Y Götberg, D Millisaljevic, E Zapartas, M Renzo, S Justham, Philipp Podsiadlowski, RA Fesen

Abstract:

Massive stars in binaries can give rise to extreme phenomena such as X-ray binaries and gravitational wave sources after one or both stars end their lives as core-collapse supernovae. Stars in close orbit around a stellar or compact companion are expected to explode as "stripped-envelope supernovae", showing no (Type Ib/c) or little (Type IIb) signs of hydrogen in the spectra, because hydrogen-rich progenitors are too large to fit. The physical processes responsible for the stripping process and the fate of the companion are still very poorly understood. Aiming to find new clues, we investigate Cas~A, which is a very young ($\sim$340 \,yr) and near ($\sim$3.4\,kpc) remnant of a core collapse supernova. Cas~A has been subject to several searches for possible companions, all unsuccessfully. We present new measurements of the proper motions and photometry of stars in the vicinity based on deep HST ACS/WFC and WFC3-IR data. We identify stellar sources that are close enough in projection, but using their proper motions we show that none are compatible with being at the location of center at the time of explosion, in agreement with earlier findings. Our photometric measurements allow us to place much deeper (order of magnitude) upper limits on the brightness of possible undetected companions. We systematically compare them with model predictions for a wide variety of scenarios. We can confidently rule out the presence of any stellar companion of any reasonable mass and age (main sequence, pre main sequence or stripped). Although this finding is not in direct conflict with model predictions, it does rule out what many considered to be the most likely evolutionary scenario for type IIb supernova. (abstract abbreviated)
More details from the publisher
More details
More details
Details from ArXiV

Progenitors of ultra-stripped supernovae

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)

Authors:

Thomas Tauris, Norbert Langer, Philipp Podsiadlowski

Abstract:

The explosion of ultra-stripped stars in close binaries may explain new discoveries of weak and fast optical transients. We have demonstrated that helium star companions to neutron stars (NSs) may evolve into naked metal cores as low as ~1.5 Msun, barely above the Chandrasekhar mass limit, by the time they explode. Here we present a new systematic investigation of the progenitor evolution leading to such ultra-stripped supernovae (SNe), in some cases yielding pre-SN envelopes of less than 0.01 Msun. We discuss the nature of these SNe (electron-capture vs iron core-collapse) and their observational light-curve properties. Ultra-stripped SNe are highly relevant for binary pulsars, as well as gravitational wave detection of merging NSs by LIGO/VIRGO, since these events are expected to produce mainly low-kick NSs in the mass range 1.10-1.80 Msun.
More details
More details from the publisher
Details from ORA
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Page 66
  • Page 67
  • Current page 68

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet