Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Philipp Podsiadlowski

Emeriti Professor

Sub department

  • Astrophysics
philipp.podsiadlowski@seh.ox.ac.uk
Denys Wilkinson Building
  • About
  • Publications

THE EFFECTS OF DISPERSION ON THE APPARENT ORBITAL PARAMETERS OF CLOSE BINARY MILLISECOND PULSARS AND PSR 0021-72A

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 247:3 (1990) 523-528

Authors:

P PODSIADLOWSKI, T NAYLOR, AC FABIAN
More details

AN ALTERNATIVE BINARY MODEL FOR SN1987A

NATURE 338:6214 (1989) 401-403

Authors:

P PODSIADLOWSKI, PC JOSS
More details from the publisher

IS SUPERNOVA 1987A A STRIPPED ASYMPTOTIC-BRANCH GIANT IN A BINARY-SYSTEM

NATURE 331:6153 (1988) 237-240

Authors:

PC JOSS, P PODSIADLOWSKI, JJL HSU, S RAPPAPORT
More details from the publisher

Hydrodynamical simulations and similarity relations for eruptive mass loss from massive stars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)

Authors:

Stanley P Owocki, Ryo Hirai, Philipp Podsiadlowski, Fabian Schneider

Abstract:

Motivated by the eruptive mass loss inferred from Luminous Blue Variable (LBV) stars, we present 1D hydrodynamical simulations of the response from sudden energy injection into the interior of a very massive ($100 \, M_\odot$) star. For a fiducial case with total energy addition set to a factor $f=0.5$ of the net stellar binding energy, and applied within the stellar envelope, we detail the dynamical response that leads to ejection of the outermost $7.2 \, M_\odot$. We find that the ejecta's variations in time $t$ and radius $r$ for the velocity $v$, density $\rho$, and temperature $T$ are quite well fit by similarity forms in the variable $r/t \approx v$. Specifically the scaled density follows a simple exponential decline $\rho t^{3} \sim \exp (-r/v_{\rm o} t)$. This `exponential similarity' leads to analytic scaling relations for total ejecta mass $\Delta M$ and kinetic energy $\Delta K$ that agree well with the hydrodynamical simulations, with the specific-energy-averaged speed related to the exponential scale speed $v_{\rm o}$ through ${\bar v} \equiv \sqrt{2 \Delta K/\Delta M} = \sqrt{12} \, v_{\rm o}$, and a value comparable to the star's surface escape speed, $v_{\rm esc}$. Models with energy added in the core develop a surface shock breakout that propels an initial, higher-speed ejecta ($>$5000km s$^{-1}$), but the bulk of the ejected material still follows the same exponential similarity scalings with ${\bar v} \approx v_{\rm esc}$. A broader parameter study examines how the ejected mass and energy depends on the energy-addition factor $f$, for three distinct model series that locate the added energy in either the core, envelope, or near-surface. We conclude by discussing the relevance of these results for understanding LBV outbursts and other eruptive phenomena, such as failed supernovae and pulsational pair instability events.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae

Authors:

A Vigna-Gómez, S Justham, I Mandel, SED Mink, PHILIPP Podsiadlowski

Abstract:

Interactions between massive stars in binaries are thought to be responsible for much of the observed diversity of supernovae. As surveys probe rarer populations of events, we should expect to see supernovae arising from increasingly uncommon progenitor channels. Here we examine a scenario in which massive stars merge after they have both formed a hydrogen-exhausted core. We suggest this could produce stars which explode as pair-instability supernovae (PISNe) with significantly more hydrogen, at a given metallicity, than in single-star models with the same pre-explosion oxygen-rich core mass. We investigate the subset of those stellar mergers which later produce pulsational PISNe, and estimate that the rate of such post-merger, hydrogen-rich pulsational PISNe could approach a few in a thousand of all core-collapse supernovae. The nature and predicted rate of such hydrogen-rich pulsational PISNe are reminiscent of the very unusual supernova iPTF14hls. For plausible assumptions, PISNe from similar mergers might dominate the rate of PISNe in the local Universe.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Page 66
  • Current page 67
  • Page 68
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet