Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The Cassiopeia A Supernova remnant and its Central Compact Object in X-rays

The Cassiopeia A Supernova remnant and its Central Compact Object as seen by the Chandra X-ray telescope

Credit: NASA/CXC/SAO

Dr. Bettina Posselt

Research Scientist / Affiliate Associate Research Professor (PSU)

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
bettina.posselt@physics.ox.ac.uk
  • About
  • Publications

A Coherent Radio Burst from an X-Ray Neutron Star in the Carina Nebula

The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) L3

Authors:

KM Rajwade, J Tian, G Younes, B Posselt, B Stappers, Z Wadiasingh, ED Barr, MC Bezuidenhout, M Caleb, F Jankowski, M Kramer, I Pastor-Marazuela, M Surnis

Abstract:

The neutron star zoo comprises several subpopulations that range from energetic magnetars and thermally emitting X-ray neutron stars to radio-emitting pulsars. Despite studies over the last five decades, it has been challenging to obtain a clear physical link between the various populations of neutron stars, vital to constrain their formation and evolutionary pathways. Here we report the detection of a burst of coherent radio emission from a known radio-quiet, thermally emitting neutron star 2XMM J104608.7−594306 in the Carina Nebula. The burst has a distinctive sharp rise followed by a decay made up of multiple components, which is unlike anything seen from other radio-emitting neutron stars. It suggests an episodic event from the neutron star surface, akin to transient radio emission seen from magnetars. The radio burst confirms that the X-ray source is a neutron star and suggests a new link between these apparently radio-quiet X-ray-emitting sources and other transient or persistent radio-emitting neutron stars. It also suggests that a common physical mechanism for emission might operate over a range of magnetic field strengths and neutron star ages. We propose that 2XMM J104608.7−594306 straddles the boundary between young, energetic neutron stars and their evolved radio-emitting cousins and may bridge these two populations. The detection of such a radio burst also shows that other radio-quiet neutron stars may also emit such sporadic radio emission that has been missed by previous radio surveys and highlights the need for regular monitoring of this unique subpopulation of neutron stars.
More details from the publisher
Details from ORA
More details

The Thousand-Pulsar-Array programme on MeerKAT–XVI. Mapping the Galactic magnetic field with pulsar observations

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:3 (2025) 2112-2130

Authors:

LS Oswald, P Weltevrede, B Posselt, S Johnston, A Karastergiou, ME Lower

Abstract:

Measuring the magnetic field of the Milky Way reveals the structure and evolution of the Galaxy. Pulsar rotation measures (RMs) provide a means to probe this Galactic magnetic field (GMF) in three dimensions. We use the largest single-origin data set of pulsar measurements, from the MeerKAT Thousand-Pulsar-Array, to map out GMF components parallel to pulsar lines of sight. We also present these measurements for easy integration into the consolidated RM catalogue, RMTable. Focusing on the Galactic disc, we investigate competing theories of how the GMF relates to the spiral arms, comparing our observational map with five analytic models of magnetic field structure. We also analyse RMs to extragalactic radio sources, to help build-up a three-dimensional picture of the magnetic structure of the Galaxy. In particular, our large number of measurements allows us to investigate differing magnetic field behaviour in the upper and lower halves of the Galactic plane. We find that the GMF is best explained as following the spiral arms in a roughly bisymmetric structure, with antisymmetric parity with respect to the Galactic plane. This picture is complicated by variations in parity on different spiral arms, and the parity change location appears to be shifted by a distance of 0.15 kpc perpendicular to the Galactic plane. This indicates a complex relationship between the large-scale distributions of matter and magnetic fields in our Galaxy. Future pulsar discoveries will help reveal the origins of this relationship with greater precision, as well as probing the locations of local magnetic field inhomogenities.
More details from the publisher
Details from ORA
More details

The middle-aged pulsar PSR J1741-2054 and its bow-shock nebula in the far-ultraviolet

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

Vadim Abramkin, George G Pavlov, Yuriy Shibanov, B Posselt, Oleg Kargaltsev
More details from the publisher
More details

NICER Timing of the X-Ray Thermal Isolated Neutron Star RX J0806.4–4123

The Astrophysical Journal American Astronomical Society 972:2 (2024) 197

Authors:

B Posselt, GG Pavlov, WCG Ho, F Haberl
More details from the publisher
More details

Probing the Spectrum of the Magnetar 4U 0142+61 with JWST

The Astrophysical Journal American Astronomical Society 972:2 (2024) 176

Authors:

Jeremy Hare, George G Pavlov, Bettina Posselt, Oleg Kargaltsev, Tea Temim, Steven Chen
More details from the publisher
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet