Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The Cassiopeia A Supernova remnant and its Central Compact Object in X-rays

The Cassiopeia A Supernova remnant and its Central Compact Object as seen by the Chandra X-ray telescope

Credit: NASA/CXC/SAO

Dr. Bettina Posselt

Research Scientist / Affiliate Associate Research Professor (PSU)

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
bettina.posselt@physics.ox.ac.uk
  • About
  • Publications

The Thousand-Pulsar-Array programme on MeerKAT – VIII. The subpulse modulation of 1198 pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:3 (2023) 4562-4581

Authors:

X Song, P Weltevrede, A Szary, G Wright, Mj Keith, A Basu, S Johnston, Aris Karastergiou, Ra Main, Lucy S Oswald, A Parthasarathy, Bettina Posselt, M Bailes, S Buchner, B Hugo, M Serylak

Abstract:

We report on the subpulse modulation properties of 1198 pulsars using the Thousand-Pulsar-Array programme on MeerKAT. About 35 per cent of the analysed pulsars exhibit drifting subpulses that are more pronounced towards the death line, consistent with previous studies. We estimate that this common phenomenon is detectable in 60 per cent of the overall pulsar population if high-quality data were available for all. This large study reveals the evolution of drifting subpulses across the pulsar population in unprecedented detail. In particular, we find that the modulation period P3 follows a V-shaped evolution with respect to the characteristic age τc, such that the smallest P3 values, corresponding to the Nyquist period P3 ≃ 2, are found at τc ≃ 107.5 yr. The V-shaped evolution can be interpreted and reproduced if young pulsars possess aliased fast intrinsic P3, which monotonically increase, ultimately achieving a slow unaliased P3. Enhancement of irregularities in intrinsic subpulse modulation by aliasing in small-τc pulsars would explain their observed less well defined P3’s and weaker spectral features. Modelling these results as rotating subbeams, their circulation must slow down as the pulsar evolves. This is the opposite to that expected if circulation is driven by E × B drift. This can be resolved if the observed P3 periodicity is due to a beat between an E × B system and the pulsar period. As a by-product, we identified the correct periods and spin-down rates for 12 pulsars, for which harmonically related values were reported in the literature.
More details from the publisher
Details from ORA
More details

The Thousand-Pulsar-Array program on MeerKAT -- IX. The time-averaged properties of the observed pulsar population

(2022)

Authors:

B Posselt, A Karastergiou, S Johnston, A Parthasarathy, LS Oswald, RA Main, A Basu, MJ Keith, X Song, P Weltevrede, C Tiburzi, M Bailes, S Buchner, M Geyer, M Kramer, R Spiewak, V Venkatraman Krishnan
More details from the publisher
Details from ArXiV

The Thousand Pulsar Array programme on MeerKAT – X. Scintillation arcs of 107 pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press 518:1 (2022) 1086-1097

Authors:

Ra Main, A Parthasarathy, S Johnston, A Karastergiou, A Basu, Ad Cameron, Mj Keith, Lucy Oswald, B Posselt, Dj Reardon, X Song, P Weltevrede

Abstract:

We present the detection of 107 pulsars with interstellar scintillation arcs at 856–1712 MHz, observed with the MeerKAT Thousand Pulsar Array Programme. Scintillation arcs appear to be ubiquitous in clean, high S/N observations, their detection mainly limited by short observing durations and coarse frequency channel resolution. This led the survey to be sensitive to nearby, lightly scattered pulsars with high effective velocity – from a large proper motion, a screen nearby the pulsar, or a screen near the Earth. We measure the arc curvatures in all of our sources, which can be used to give an estimate of screen distances in pulsars with known proper motion, or an estimate of the proper motion. The short scintillation time-scale in J1731−4744 implies a scattering screen within 12 pc of the source, strongly suggesting the association between this pulsar and the supernova remnant RCW 114. We measure multiple parabolic arcs of five pulsars, all of which are weakly scintillating with high proper motion. Additionally, several sources show hints of inverted arclets suggesting scattering from anisotropic screens. Building on this work, further targeted MeerKAT observations of many of these pulsars will improve understanding of our local scattering environment and the origins of scintillation; annual scintillation curves would lead to robust screen distance measurements, and the evolution of arclets in time and frequency can constrain models of scintillation.
More details from the publisher
Details from ORA
More details
More details

A Quarter Century of Guitar Nebula/Filament Evolution

The Astrophysical Journal American Astronomical Society 939:2 (2022) 70

Authors:

Martijn de Vries, Roger W Romani, Oleg Kargaltsev, George Pavlov, Bettina Posselt, Patrick Slane, Niccolo’ Bucciantini, C-Y Ng, Noel Klingler
More details from the publisher

The Cooling of the Central Compact Object in Cas A from 2006 to 2020

The Astrophysical Journal American Astronomical Society 932:2 (2022) 83

Authors:

B Posselt, GG Pavlov
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet