Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Joseph Prentice

Long Term Visitor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum matter in high magnetic fields
joseph.prentice@seh.ox.ac.uk
Clarendon Laboratory, room 265,105
Department of Materials profile
St Edmund Hall profile
  • About
  • Publications

Titelbild: Supramolecular Self‐Assembly as a Tool To Preserve the Electronic Purity of Perylene Diimide Chromophores (Angew. Chem. 12/2023)

Angewandte Chemie Wiley 135:12 (2023)

Authors:

Ina Heckelmann, Zifei Lu, Joseph CA Prentice, Florian Auras, Tanya K Ronson, Richard H Friend, Jonathan R Nitschke, Sascha Feldmann
More details from the publisher

Supramolecular self-assembly as a tool to preserve the electronic purity of perylene diimide chromophores

Angewandte Chemie International Edition Wiley 62:12 (2023) e202216729

Authors:

Ina Heckelmann, Zifei Lu, Joseph CA Prentice, Florian Auras, Tanya K Ronson, Richard H Friend, Jonathan R Nitschke, Sascha Feldmann

Abstract:

Organic semiconductors are promising for efficient, printable optoelectronics. However, strong excited-state quenching due to uncontrolled aggregation limits their use in devices. We report on the self-assembly of a supramolecular pseudo-cube formed from six perylene diimides (PDIs). The rigid, shape-persistent cage sets the distance and orientation of the PDIs and suppresses intramolecular rotations and vibrations, leading to non-aggregated, monomer-like properties in solution and the solid state, in contrast to the fast fluorescence quenching in the free ligand. The stabilized excited state and electronic purity in the cage enables the observation of delayed fluorescence due to a bright excited multimer, acting as excited-state reservoir in a rare case of benign inter-chromophore interactions in the cage. We show that self-assembly provides a powerful tool for retaining and controlling the electronic properties of chromophores, and to bring molecular electronics devices within reach.
More details from the publisher
Details from ORA
More details
More details

Efficiently computing excitations of complex systems: linear-scaling time-dependent embedded mean-field theory in implicit solvent

ArXiv 2203.0471 (2022)
Details from ArXiV

Accurate and efficient computation of optical absorption spectra of molecular crystals: The case of the polymorphs of roy

Journal of Chemical Theory and Computation (2021)

Authors:

Jca Prentice, Aa Mostofi

Abstract:

When calculating the optical absorption spectra of molecular crystals from first principles, the influence of the crystalline environment on the excitations is of significant importance. For such systems, however, methods to describe the excitations accurately can be computationally prohibitive due to the relatively large system sizes involved. In this work, we demonstrate a method that allows optical absorption spectra to be computed both efficiently and at high accuracy. Our approach is based on the spectral warping method successfully applied to molecules in solvent. It involves calculating the absorption spectrum of a supercell of the full molecular crystal using semi-local time-dependent density functional theory (TDDFT), before warping the spectrum using a transformation derived from smaller-scale semi-local and hybrid TDDFT calculations on isolated dimers. We demonstrate the power of this method on three polymorphs of the well-known color polymorphic compound ROY and find that it outperforms both small-scale hybrid TDDFT dimer calculations and large-scale semi-local TDDFT supercell calculations, when compared to the experiment.
More details from the publisher
Details from ORA
More details
More details

Strain-tuning of nematicity and superconductivity in single crystals of FeSe

Physical Review B American Physical Review 103:2021 (2021) 205139

Authors:

Michele Ghini, Matthew Bristow, Joseph Prentice, Samuel Sutherland, Samuele Sanna, Amir A Haghighirad, Amalia I Coldea

Abstract:

Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet