A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3
Zeitschrift fur Kristallographie - New Crystal Structures 212:10 (1997) 712-719
Abstract:
The structural changes of stoichiometric LiNbO3 at temperatures up to 1470 K have been investigated by neutron powder diffraction. At Tc ≈ 1460 K, LiNbOi transforms from a paraelectric high-temperature (R3c) to a ferroelectric low temperature structure (R3c). The phase transition is of coupled order-disorder and displacive type. In the high-temperature phase, Li is highly disordered over two off-centre positions, whereas Nb takes a centrosymmetric position within O6 octahedra. An analysis of anisotropic displacement parameters shows that the probability density function of Li is extended along c, that of the oxygens is more or less perpendicular to the Nb-O bonds, and that of Nb is slightly extended in the a - b plane at high temperatures. An increase of the tilt angle of the NbO6 octahedra away from an h.c.p. arrangement towards a perovskite structure was observed. The octahedra become almost regular at high temperatures. Comparison with an earlier investigation of congruent lithium niobate shows a quite similar behaviour, however, all parameters of the latter are closer to those of the perovskite structure at same temperatures. Anomalies in the behaviour of the order parameters, a more complicated disorder and a high mobility of Li at high temperatures are explained by the competition of the order-disorder and displacive character of the phase transition. © 1997, Walter de Gruyter. All rights reserved.Anomalous Jahn-Teller distortions in La0.75 Ca0.25 MnO3 system: An X-ray absorption study
Journal of Superconductivity 10:4 (1997) 315-318
Abstract:
Mn K-edge X-ray absorption near edge structure (XANES) measurements have been made to study the temperature-dependent lattice effects in the La0.75Ca0.25MnO3 system. The high-resolution XANES spectra recorded with high signal-to-noise ratio have allowed us to study the temperature dependence of the Jahn-Teller splitting indicated directly by the dipole forbidden pre-peaks corresponding to transition in Mn 3d states. The results show splitting of the eg state in its two orbitals (dx2-y2 and d3z2-r2). The energy splitting shows anomalous temperature dependence across the giant magnetoresistance transition temperature. © 1997 Plenum Publishing Corporation.Antiferromagnetism, Ferromagnetism, and Phase Separation in the GMR System Sr2-x La1+x Mn2 O7
Chemistry of Materials 9:4 (1997) 1042-1049
Abstract:
Neutron and synchrotron X-ray powder diffraction techniques have been used to refine the crystal and magnetic structures of the n = 2 Ruddlesden-Popper (RP) system Sr2LaMn2O7. The sample is shown to be biphasic, although both phases are of the RP type and have similar structural parameters. The majority phase (81%) adopts a collinear antiferromagnetic structure below ∼210 K whereas the minority phase is ferromagnetically ordered below ∼125 K. The ordered magnetic moments lie in the xy plane in both phases. The behavior observed is discussed in terms of the interplay between structural and electronic factors. Comparison with data obtained previously by other workers leads to the conclusion that our results have some general significance in the study of n = 2 RP systems.Cage occupancy and compressibility of deuterated N2 -clathrate hydrate by neutron diffraction
Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 29:1 (1997) 65-77
Abstract:
This paper reports pressure dependent high resolution neutron diffraction work on N2-clathrates, which for the first time provides numbers on the compressibility as well as the location and degree of filling of the guest molecules in the small and large cages. N2-clathrates crystallize, at least at lower pressures and temperatures near 0 °C, in the Stackelberg type II structure. However, during the diffraction experiments we have observed the transient and partial formation of the von Stackelberg type I N2-clathrate at pressures exceeding several hundred bar. The filling of the small cages in the type II clathrate roughly follows a Langmuir isotherm. In contrast to most previous assumptions there is strong evidence that the large cages are doubly occupied in both type I and type II N2-clathrates. The observed filling can be fitted reasonably well by a two-constant Langmuir model.Charge, orbital, and magnetic ordering ins
Physical Review B - Condensed Matter and Materials Physics 55:5 (1997) 3015-3023