MeerKAT discovery of a hyperactive repeating fast radio burst source
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:2 (2025) 1685-1700
Abstract:
We present the discovery and localization of a repeating fast radio burst (FRB) source from the MeerTRAP project, a commensal fast radio transient search programme using the MeerKAT telescope. FRB 20240619D was first discovered on 2024 June 19 with three bursts being detected within 2 min in the MeerKAT L band (856–1712 MHz). We conducted follow-up observations of FRB 20240619D with MeerKAT using the Ultra-High Frequency (UHF; MHz), L-band and S-band (1968–2843 MHz) receivers one week after its discovery, and recorded a total of 249 bursts. The MeerKAT-detected bursts exhibit band-limited emission with an average fractional bandwidth of 0.31, 0.34, and 0.48 in the UHF, L-band, and S-band, respectively. We find our observations are complete down to a fluence limit of Jy ms, above which the cumulative burst rate follows a power law with and in the UHF and L band, respectively. The near-simultaneous L-band, UHF, and S-band observations reveal a frequency dependent burst rate with more bursts being detected in the L band than in the UHF and S band, suggesting a spectral turnover in the burst energy distribution of FRB 20240619D. Our polarimetric analysis demonstrates that most of the bursts have linear polarization fractions and circular polarization fractions. We find no optical counterpart of FRB 20240619D in the MeerLICHT optical observations simultaneous to the radio observations and set a fluence upper limit in MeerLICHT’s q band of 0.76 Jy ms and an optical-to-radio fluence ratio limit of 0.034 for a 15 s exposure.Publisher Correction: Sporadic radio pulses from a white dwarf binary at the orbital period
Nature Astronomy Springer Nature (2025) 1-1
An activity transition in FRB 20201124A: Methodological rigor, detection of frequency-dependent cessation, and a geometric magnetar model
Astronomy & Astrophysics EDP Sciences 696 (2025) a194
Abstract:
We report detections of fast radio bursts (FRBs) from the repeating source FRB 20201124A with Apertif/WSRT and GMRT, and measurements of basic burst properties, especially the dispersion measure (DM) and fluence. Based on comparisons of these properties with previously published larger samples, we argue that the excess DM reported earlier for pulses with integrated signal-to-noise ratios ≲1000 is due to incompletely accounting for what is known as the sad trombone effect, even when using structure-maximizing DM algorithms. Our investigations of fluence distributions next lead us to advise against formal power-law fitting; we especially caution against the use of the least-squares method, and we demonstrate the large biases involved. A maximum likelihood estimator (MLE) provides a much more accurate estimate of the power law, and we provide accessible code for direct inclusion in future research. Our GMRT observations were fortuitously scheduled around the end of the Spring 2021 activity window as recorded by FAST. We detected several bursts (one of them very strong) at 400/600 MHz, a few hours after sensitive FAST non-detections already showed the 1.3 GHz FRB emission to have ceased. After FRB 20180916B, this is a second example of a frequency-dependent activity window identified in a repeating FRB source. Since numerous efforts have so far failed to determine a spin period for FRB 20201124A, we conjecture that it is an ultra-long-period magnetar, with a period on the scale of months, and with a very wide, highly irregular duty cycle. Assuming the emission comes from closed field lines, we used radius-to-frequency mapping and polarization information from other studies to constrain the magnetospheric geometry and location of the emission region. Our initial findings are consistent with a possible connection between FRBs and crustal motion events.Contemporaneous optical-radio observations of a fast radio burst in a close galaxy pair
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) 1800-1815
Sporadic radio pulses from a white dwarf binary at the orbital period
Nature Astronomy Nature Research 9:5 (2025) 672-684