Solvent-free method for defect reduction and improved performance of p-i-n vapor-deposited perovskite solar cells
ACS Energy Letters American Chemical Society 7 (2022) 1903-1911
Abstract:
As perovskite-based photovoltaics near commercialization, it is imperative to develop industrial-scale defect-passivation techniques. Vapor deposition is a solvent-free fabrication technique that is widely implemented in industry and can be used to fabricate metal-halide perovskite thin films. We demonstrate markably improved growth and optoelectronic properties for vapor-deposited [CH(NH2)2]0.83Cs0.17PbI3 perovskite solar cells by partially substituting PbI2 for PbCl2 as the inorganic precursor. We find the partial substitution of PbI2 for PbCl2 enhances photoluminescence lifetimes from 5.6 ns to over 100 ns, photoluminescence quantum yields by more than an order of magnitude, and charge-carrier mobility from 46 cm2/(V s) to 56 cm2/(V s). This results in improved solar-cell power conversion efficiency, from 16.4% to 19.3% for the devices employing perovskite films deposited with 20% substitution of PbI2 for PbCl2. Our method presents a scalable, dry, and solvent-free route to reducing nonradiative recombination centers and hence improving the performance of vapor-deposited metal-halide perovskite solar cells.A Theoretical Framework for Microscopic Surface and Interface Dipoles, Work Functions, and Valence Band Alignments in 2D and 3D Halide Perovskite Heterostructures
ACS Energy Letters American Chemical Society (ACS) 7:1 (2022) 349-357
Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells
Energy and Environmental Science Royal Society of Chemistry 15 (2021) 714-726
Abstract:
With power conversion efficiencies of perovskite-on-silicon and all-perovskite tandem solar cells increasing at rapid pace, wide bandgap (> 1.7 eV) metal-halide perovskites (MHPs) are becoming a major focus of academic and industrial photovoltaic research. Compared to their lower bandgap (< 1.6 eV) counterparts, these types of perovskites suffer from higher levels of non-radiative losses in both the bulk material and in device configurations, constraining their efficiencies far below their thermodynamic potential. In this work, we investigate the energy losses in methylammonium (MA) free high-Br-content widegap perovskites by using a combination of THz spectroscopy, steady-state and time-resolved photoluminescence, coupled with drift-diffusion simulations. The investigation of this system allows us to study charge-carrier recombination in these materials and devices in the absence of halide segregation due to the photostabilty of formamidinium-cesium based lead halide perovskites. We find that these perovskites are characterised by large non-radiative recombination losses in the bulk material and that the interfaces with transport layers in solar cell devices strongly limit their open-circuit voltage. In particular, we discover that the interface with the hole transport layer performs particularly poorly, in contrast to 1.6 eV bandgap MHPs which are generally limited by the interface with the electron-transport layer. To overcome these losses, we incorporate and investigate the recombination mechanisms present with perovskites treated with the ionic additive 1-butyl-1-methylpipiderinium tetrafluoroborate. We find that this additive not only improves the radiative efficiency of the bulk perovskite, but also reduces the non-radiative recombination at both the hole and electron transport layer interfaces of full photovoltaic devices. In addition to unravelling the beneficial effect of this specific treatment, we further optimise our solar cells by introducing an additional LiF interface treatment at the electron transport layer interface. Together these treatments enable MA-free 1.79 eV bandgap perovskite solar cells with open-circuit voltages of 1.22 V and power conversion efficiencies approaching 17 %, which is among the highest reported for this material system.Horizons Community Board collection: solar energy conversion.
Nanoscale horizons 6:11 (2021) 839-841
Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells
ACS Energy Letters American Chemical Society (ACS) 5:7 (2020) 2200-2207