Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Prof Dr Armin Reichold

Professor of Physics

Research theme

  • Accelerator physics
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • Future Colliders
  • SNO+
Armin.Reichold@physics.ox.ac.uk
Telephone: 01865 (2)73358
Denys Wilkinson Building, room 473,617
  • About
  • Publications

FEASIBILITY STUDY OF A 2ND GENERATION SMITH-PURCELL RADIATION MONITOR FOR THE ESTB AT SLAC

Proceedings of IPAC2013, Shanghai, China (2013)

Authors:

Armin Reichold, C Perry, F Bakkali, G Doucas, I Konoplev, R Bartolini

SPECTRA OF COHERENT SMITH-PURCELL RADIATION OBSERVED FROM SHORT ELECTRON BUNCHES: NUMERICAL AND EXPERIMENTAL STUDIES

Proceedings of IPAC2013, Shanghai, China (2013)

Authors:

Armin Reichold, F Bakkali Taheri, I Konoplev, G Doucas

Publisher’s Note: Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in s=7 TeV pp collisions using 1 fb-1 of ATLAS data [Phys. Rev. D 85, 012006 (2012)]

Physical Review D American Physical Society (APS) 87:9 (2013) 099903
More details from the publisher
More details

Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

European Physical Journal C 73:3 (2013)

Authors:

G Aad, B Abbott, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov, B Abi, M Abolins, OSA Zeid, H Abramowicz, H Abreu, E Acerbi, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, M Aderholz, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, A Akiyama, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, M Aliyev, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, BA Gonzalez, MG Alviggi, K Amako, P Amaral, C Amelung, VV Ammosov, A Amorim, G Amorós, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, ML Andrieux, XS Anduaga, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, S Aoun, LA Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, E Arik, M Arik, AJ Armbruster, O Arnaez

Abstract:

The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of √s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of Ks and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2–5 % for central isolated hadrons and 1–3 % for the final calorimeter jet energy scale.
More details from the publisher
More details

Longitudinal profile monitors using Coherent Smith-Purcell radiation

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2013)

Authors:

J Barros, S Le Corre, N Delerue, M Vieille Grosjean, F Bakkali Taheri, R Bartolini, G Doucas, I Konoplev, C Perry, A Reichold, S Stevenson, L Cassinari, M Labat, HL Andrews, N Fuster-Martinez, C Clarke

Abstract:

Coherent Smith-Purcell radiation has the potential of providing information on the longitudinal profile of an electron bunch. The E-203 experiment at the FACET User Facility measures bunch profiles from the SLAC linac in the hundreds of femtoseconds range and the SPESO collaboration at Synchrotron SOLEIL is planning to make an accurate 2D map of the Coherent Smith-Purcell Radiation emission. © 2013 Elsevier B.V.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet