Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Prof Dr Armin Reichold

Professor of Physics

Research theme

  • Accelerator physics
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • Future Colliders
  • SNO+
Armin.Reichold@physics.ox.ac.uk
Telephone: 01865 (2)73358
Denys Wilkinson Building, room 473,617
  • About
  • Publications

THE DESIGN AND FUNCTION OF A RADIATION TOLERANT SILICON TRACKER FOR AN LHC EXPERIMENT

NUCL PHYS B (1993) 250-259

Authors:

SJ BATES, F ANGHINOLFI, P ASPELL, R BARDOS, R BONINO, D CAMPBELL, A CHILINGAROV, AG CLARK, N CLAUSSEN, C COUYOUMTZELIS, E FRETWURST, O GILDEMEISTER, M GLASER, G GORFINE, C GOSSLING, R HAWKINGS, EHM HEIJNE, P JARRON, F LEMEILLEUR, C LEROY, G LINDSTROM, P LUBRANO, G MOORHEAD, DJ MUNDAY, P MURRAY, G NAWRATH, E OCCELLI, H PAGEL, B PAPENDICK, MA PARKER, S PILATH, A POPPLETON, A REICHOLD, J RIOUX, A ROLF, M ROUGER, P ROY, JC SANTIARD, P SCAMPOLI, T SCHULZ, P SELLER, R SPIWOKS, G TAYLOR, J TEIGER, E TSESMELIS, S TOVEY, H VERWEIJ, A WEIDBERG, T WEISSE, X WU, R WUNSTORF
More details from the publisher
More details

Development, characterisation, and deployment of the SNO+ liquid scintillator

JINST

Authors:

SNO Collaboration, MR Anderson, S Andringa, L Anselmo, E Arushanova, S Asahi, M Askins, DJ Auty, AR Back, Z Barnard, N Barros, D Bartlett, F Barão, R Bayes, EW Beier, A Bialek, SD Biller, E Blucher, R Bonventre, M Boulay, D Braid, E Caden, EJ Callaghan, J Caravaca, J Carvalho, L Cavalli, D Chauhan, M Chen, O Chkvorets, KJ Clark, B Cleveland, D Cookman, C Connors, IT Coulter, MA Cox, D Cressy, X Dai, C Darrach, B Davis-Purcell, C Deluce, MM Depatie, F Descamps, J Dittmer, F Di Lodovico, N Duhaime, F Duncan, J Dunger, AD Earle, D Fabris, E Falk, A Farrugia, N Fatemighomi, V Fischer, E Fletcher, R Ford, K Frankiewicz, N Gagnon, A Gaur, K Gilje, OI González-Reina, D Gooding, P Gorel, K Graham, C Grant, J Grove, S Grullon, E Guillian, S Hall, AL Hallin, D Hallman, S Hans, J Hartnell, P Harvey, M Hedayatipour, WJ Heintzelman, J Heise, RL Helmer, D Horne, B Hreljac, J Hu, ASM Hussain, T Iida, AS Inácio, M Jackson, NA Jelley, CJ Jillings, C Jones, PG Jones, K Kamdin, T Kaptanoglu, J Kaspar, K Keeter, C Kefelian, P Khaghani, L Kippenbrock, JR Klein, R Knapik, J Kofron, LL Kormos, S Korte, B Krar, C Kraus, CB Krauss, T Kroupova, K Labe, F Lafleur, I Lam, C Lan, BJ Land, R Lane, S Langrock, A LaTorre, I Lawson, L Lebanowski, GM Lefeuvre, EJ Leming, A Li, J Lidgard, B Liggins, YH Lin, X Liu, Y Liu, V Lozza, M Luo, S Maguire, A Maio, K Majumdar, S Manecki, J Maneira, RD Martin, E Marzec, A Mastbaum, J Mauel, N McCauley, AB McDonald, P Mekarski, M Meyer, C Miller, C Mills, M Mlejnek, E Mony, I Morton-Blake, MJ Mottram, S Nae, M Nirkko, LJ Nolan, VM Novikov, HM O'Keeffe, E O'Sullivan, GD Orebi Gann, MJ Parnell, J Paton, SJM Peeters, T Pershing, Z Petriw, J Petzoldt, L Pickard, D Pracsovics, G Prior, JC Prouty, S Quirk, A Reichold, S Riccetto, R Richardson, M Rigan, A Robertson, J Rose, R Rosero, PM Rost, J Rumleskie, MA Schumaker, MH Schwendener, D Scislowski, J Secrest, M Seddighin, L Segui, S Seibert, I Semenec, F Shaker, T Shantz, MK Sharma, TM Shokair, L Sibley, JR Sinclair, K Singh, P Skensved, M Smiley, T Sonley, R Stainforth, M Strait, MI Stringer, R Svoboda, A Sörensen, B Tam, J Tatar, L Tian, N Tolich, J Tseng, HWC Tseung, E Turner, R Van Berg, JGC Veinot, CJ Virtue, B von Krosigk, E Vázquez-Jáuregui, JMG Walker, M Walker, SC Walton, J Wang, M Ward, O Wasalski, J Waterfield, JJ Weigand, RF White, JR Wilson, TJ Winchester, P Woosaree, A Wright, JP Yanez, M Yeh, T Zhang, Y Zhang, T Zhao, K Zuber, A Zummo

Abstract:

A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity, ease of handling, and logistical availability. Its properties have been extensively characterized and are presented here. This liquid scintillator is now used in several neutrino physics experiments in addition to SNO+.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Development, characterisation, and deployment of the SNO+ liquid scintillator

JINST

Authors:

Sno Collaboration, Mr Anderson, S Andringa, L Anselmo, E Arushanova, S Asahi, M Askins, Dj Auty, Ar Back, Z Barnard, N Barros, D Bartlett, F Barão, R Bayes, Ew Beier, A Bialek, Sd Biller, E Blucher, R Bonventre, M Boulay, D Braid, E Caden, Ej Callaghan, J Caravaca, J Carvalho, L Cavalli, D Chauhan, M Chen, O Chkvorets, Kj Clark, B Cleveland, D Cookman, C Connors, It Coulter, Ma Cox, D Cressy, X Dai, C Darrach, B Davis-Purcell, C Deluce, Mm Depatie, F Descamps, J Dittmer, F Di Lodovico, N Duhaime, F Duncan, J Dunger, Ad Earle, D Fabris, E Falk

Abstract:

A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity, ease of handling, and logistical availability. Its properties have been extensively characterized and are presented here. This liquid scintillator is now used in several neutrino physics experiments in addition to SNO+.
More details from the publisher

Investigating nonlinear integrable optics with a Paul trap

Authors:

Jake Flowerdew, Armin Reichold

Abstract:

Designing high-intensity accelerators has traditionally relied on using computer simulations to study the beam dynamics. As intense beams are comprised of large numbers of particles, all interacting via Coulomb forces, such simulations require significant computational power in order to numerically predict these interactions. The Intense Beams Experiment (IBEX) is a linear Paul trap that can replicate the transverse beam dynamics in accelerators by trapping low-energy ions using RF electric fields that emulate the magnetic focusing elements of particle accelerators. IBEX’s flexibility allows different lattice designs and beam intensities to be tested with ease, which means that it can be used to test novel lattice configurations for high-intensity accelerators. Examples of such lattices arise from the theory of Nonlinear Integrable Optics, and, as discussed in this thesis, the related theory of Quasi-Integrable Optics (QIO). These theories suggest techniques for introducing nonlinear elements such as octupoles into an accelerator lattice, while keeping the system integrable and hence maintaining stable particle motion.

In this work, an upgrade to the original IBEX trap was designed, manufactured, and commissioned with the aim of experimentally testing the principles of QIO. Simulations were used to test the ability of a quasi-integrable lattice to damp a space-charge-driven coherent resonance without exciting the 4th order incoherent resonance in the vicinity. This lattice was then compared to a lattice which broke the integrability conditions, which was shown to excite the 4th order resonance. Using the newly-commissioned IBEX-2 trap, we were then able to test the quasi-integrable lattice experimentally and verify the results from simulations. This thesis demonstrates the first ions successfully trapped in a quasi-integrable lattice in a Paul trap, and discusses the benefits of introducing octupole elements according to the method prescribed by the theory of QIO. The experimental results presented here show the potential value of QIO to research on high-intensity beams in accelerators.

Details from ORA

Jet mass and substructure of inclusive jets in sqrt(s) = 7 TeV pp collisions with the ATLAS experiment

Abstract:

Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet