Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

The role of energy level matching in organic solar cells- Hexaazatriphenylene hexacarbonitrile as transparent electron transport material

Solar Energy Materials and Solar Cells 95:3 (2011) 927-932

Authors:

C Falkenberg, S Olthof, R Rieger, M Baumgarten, K Muellen, K Leo, M Riede

Abstract:

We introduce the material hexaazatriphenylene hexacarbonitrile (HATCN) as electron conducting window layer for separating the photoactive region from the cathode in organic pin type solar cells. HATCN has a wide band gap of 3.3 eV and is thus transparent in the visible range of the solar spectrum. Its electrical properties can be tuned by means of molecular n-doping which leads to an increase of electron conductivity by several orders of magnitude up to 2.2×10-4S/cm. However, an application in photovoltaic devices is restrained by its exceptionally high electron affinity, estimated 4.8 eV, which introduces an electron injection barrier to the photoactive acceptor material C60. Here, we present a strategy to remove this barrier by means of introducing doped and undoped C60 intermediate layers, thus demonstrating the importance of energy level matching in a multiple layer structure and the advantages of Fermi level control by doping. © 2010 Elsevier B.V.All rights reserved.
More details from the publisher
Details from ORA
More details

The influence of substrate heating on morphology and layer growth in C60 : ZnPc bulk heterojunction solar cells

Organic Electronics: physics, materials, applications 12:3 (2011) 435-441

Authors:

S Pfuetzner, J Jankowski, M Hein, J Meiss, C Schuenemann, C Elschner, AA Levin, K Leo, M Riede, C Mickel, B Rellinghaus

Abstract:

The change of morphology in mixed layers due to different substrate temperature T of organic solar cells containing C60 and zinc phthalocyanine (ZnPc) is studied. Heating the substrate during deposition of the bulk heterojunction C60:ZnPc leads to a significant improvement of solar cell performance, mainly due to an increase in photocurrent and fill factor (FF). This is attributed to improved charge carrier percolation pathways within the C60:ZnPc blend. Using atomic force microscopy, scanning electron microscopy, transmission electron microscopy, organic field effect transistor, X-ray diffraction, and absorption measurements, we observe aggregation, cluster-like, and polycrystalline growth of the heated bulk layer. This provides better transport percolation paths by inducing a phase separation of the molecules. Heated blend layer with thickness of 60 nm shows high performance without loss in FF. When heating the substrate to the optimum temperature of 110 °C, a power conversion efficiency of 3.0% is achieved, compared to 1.4% for an identical device prepared on a substrate held at room temperature. © 2010 Elsevier B.V. All rights reserved.
More details from the publisher
Details from ORA
More details

Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells

Applied Physics Letters 98:6 (2011)

Authors:

W Tress, A Petrich, M Hummert, M Hein, K Leo, M Riede

Abstract:

We show that S-kinks in the current voltage characteristics, which decrease the fill factor significantly, can be caused by a strong imbalance of charge carrier mobilities (hole mobility in donor and electron mobility in acceptor) in planar/flat heterojunction organic solar cells. Electrical simulations according to a drift-diffusion model predict the occurrence of an S-kink for a mobility mismatch factor larger than 100. By combining a low-mobility donor material, (1,2,3,4,9,10,11,12-octaphenyl-diindeno [1,2,3-cd: 1′, 2′, 3′ -lm]perylene), with the acceptors C60 and N, N′ -dimethylperylene-3,4:9,10-dicarboximide, which show different electron mobilities, we experimentally verify the predictions. Our results demonstrate that not only interface effects but also the photoactive material itself can cause S-kinks. © 2011 American Institute of Physics.
More details from the publisher
Details from ORA
More details

Tetrabutyl-tetraphenyl-diindenoperylene derivatives as alternative green donor in bulk heterojunction organic solar cells

Solar Energy Materials and Solar Cells 95:2 (2011) 630-635

Authors:

J Meiss, M Hummert, A Petrich, S Pfuetzner, K Leo, M Riede

Abstract:

We present the material 2,3,10,11-tetrabutyl-1,4,9,12-tetraphenyl- diindeno[1,2,3-cd:1′,2′,3′-lm] perylene (Bu4-Ph4-DIP) as alternative green donor for bulk heterojunction small molecule organic solar cells (SMOSC). It is shown that Bu4-Ph4-DIP exhibits suitable absorption characteristics to be a potential material to fill the absorption gap between the commonly used standard absorbers ZnPc and C60. Devices with bulk heterojunctions of Bu4-Ph4-DIP:C60 display very high open circuit voltages of 0.99 V, high fill factors of up to 57%, and experiments yield promising efficiencies of η>2%. Such green-blue absorbing SMOSC are characterized by current voltage and external quantum efficiency measurements, and material properties are studied. It is shown that the devices are responsive to substrate heating, and that different donoracceptor mixing ratios can increase device performance. Possible influences of mixing ratio and heating on device morphology and electrical properties are discussed.
More details from the publisher
Details from ORA
More details

Photoelectron spectroscopy investigation of thin metal films employed as top contacts in transparent organic solar cells

Thin Solid Films 519:6 (2011) 1872-1875

Authors:

S Olthof, J Meiss, B Lüssem, MK Riede, K Leo

Abstract:

The performance of transparent metal top contacts in organic solar cells can strongly be improved by employing surfactant layers. We use scanning electron microscopy to investigate the change in morphology upon insertion of an Al surfactant layer between 4,7-diphenyl-1,10-phenanthroline (BPhen) and a silver top contact. UV photoelectron spectroscopy measurements show the changes in energetic alignments at different steps of the organic/metal interface formation. Furthermore, using X-ray photoelectron spectroscopy depth profiling, we compare the differing intermixing processes happening within the two samples. Thereby, we can show that Al binds to BPhen molecules, acting as surfactant for subsequently deposited Ag layers, while Ag without any Al surfactant layer penetrates into and intermixes with the BPhen layer. © 2010 Elsevier B.V. All rights reserved.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet