1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material in organic p-i-n solar cells
Proceedings of SPIE - The International Society for Optical Engineering 6999 (2008)
Abstract:
The transparent electron transport material NTCDA (1,4,5,8- naphthalenetetracarboxylic dianhydride) was examined in order to find a suitable substitute for C60 which is today often used in small molecular organic solar cells as transport layer. Due to its wide band gap, NTCDA does not absorb in the visible range and is furthermore exciton blocking. By doping with AOB (acridine orange base), its conductivity was raised to about 1 · 10_4S/cm. It can therefore simultaneously be used as electron transport material and optical spacer in p-i-n type solar cells, leading to power conversion efficiencies of up to 2.83%. Additionally, an investigation of the surface morphology using AFM was performed.Characterisation of different hole transport materials as used in organic p-i-n solar cells
Proceedings of SPIE - The International Society for Optical Engineering 6999 (2008)
Abstract:
To reach higher performances in organic solar cells, each layer has to be optimised with respect to its purpose. In the case of a p-i-n structured solar cell, the layers are the absorber system, the doped electron and hole transport layers, and the bottom and top contacts. This work focuses on the investigation and characterisation of the transparent hole transport materials PV-TPD, PV-TPDoM, Di-NPB, and MeO-Spiro-TPD, as used in organic p-i-n solar cells. The motivation is to replace the hole transport material MeO-TPD, which has been used so far despite its morphological instability at elevated temperatures, with an energetically and morphologically more suitable material. The hole transport materials were investigated for dopability, hole mobility, absorption, reflection, cyclic voltammetry, and glass transition temperature. Further specific material properties were determined with simplified structures, e.g. m-i-p diodes, and the standard solar cells, consisting of the fullerene C 60 as acceptor and ZnPc as the donor material. The Di-NPB has turned out to be the best choice with respect to its intrinsic properties and device parameters. The deep lying HOMO, the high hole mobility of μ = 1.9 · 10-4 cm2/Vs, the morphological stability of Tg = 158°C, and the excellent results of the C60:ZnPc bulk heterojunction solar cell makes the Di-NPB highly suitable for replacement of the MeO-TPD in organic solar cells.Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses
Physical Review B - Condensed Matter and Materials Physics 77:19 (2008)
Abstract:
We report on organic p-i-n homojunctions composed of differently doped vacuum-deposited pentacene layers. We observe a remarkably high built-in voltage of 1.65 V. An analysis of the current-voltage characteristics under dark and illuminated conditions reveals that the open-circuit voltage is directly related to the built-in voltage and that the recombination process is influenced by the distinct charge transport properties of electrons and holes in the pentacene film. By a comparison with p-i-p and n-i-n single-carrier homojunctions, deep trap states located around 0.63 eV below the electron transport level are shown to influence the properties. © 2008 The American Physical Society.Comment on "Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics" [Appl. Phys. Lett. 90, 163511 (2007)]
Applied Physics Letters 92:7 (2008)
Analyzing poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl- (6,6) C61 bulk-heterojunction solar cells by UV-visible spectroscopy and optical simulations
Journal of Applied Physics 102:5 (2007)