Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

Unveiling the main sequence to starburst transition region with a sample of intermediate redshift luminous infrared galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:2 (2022) 2371-2388

Authors:

L Hogan, D Rigopoulou, S García-Burillo, A Alonso-Herrero, L Barrufet, F Combes, I García-Bernete, GE Magdis, M Pereira-Santaella, N Thatte, A Weiß
More details from the publisher

A technique to select the most obscured galaxy nuclei

(2022)

Authors:

I García-Bernete, D Rigopoulou, S Aalto, HWW Spoon, A Hernán-Caballero, A Efstathiou, PF Roche, S König
More details from the publisher
Details from ArXiV

Unveiling the Main Sequence to Starburst Transition Region with a Sample of Intermediate Redshift Luminous Infrared Galaxies

(2022)

Authors:

L Hogan, D Rigopoulou, S García-Burillo, A Alonso-Herrero, L Barrufet, F Combes, I García-Bernete, GE Magdis, M Pereira-Santaella, N Thatte, A Weiß
More details from the publisher
Details from ArXiV

Gas Phase Metallicities of Local Ultra-Luminous Infrared Galaxies Follow Normal Star-Forming Galaxies

(2022)

Authors:

Nima Chartab, Asantha Cooray, Jingzhe Ma, Hooshang Nayyeri, Preston Zilliot, Jonathan Lopez, Dario Fadda, Rodrigo Herrera-Camus, Matthew Malkan, Dimitra Rigopoulou, Kartik Sheth, Julie Wardlow
More details from the publisher

The HASHTAG Project: the first submillimeter images of the Andromeda galaxy from the ground

Astrophysical Journal Supplement IOP Science 257 (2021) 52

Authors:

Martin Bureau, Dimitra Rigopoulou

Abstract:

Observing nearby galaxies with submillimeter telescopes on the ground has two major challenges. First, the brightness is significantly reduced at long submillimeter wavelengths compared to the brightness at the peak of the dust emission. Second, it is necessary to use a high-pass spatial filter to remove atmospheric noise on large angular scales, which has the unwelcome by-product of also removing the galaxy’s large-scale structure. We have developed a technique for producing high-resolution submillimeter images of galaxies of large angular size by using the telescope on the ground to determine the small-scale structure (the large Fourier components) and a space telescope (Herschel or Planck) to determine the large-scale structure (the small Fourier components). Using this technique, we are carrying out the HARP and SCUBA-2 High Resolution Terahertz Andromeda Galaxy Survey (HASHTAG), an international Large Program on the James Clerk Maxwell Telescope, with one aim being to produce the first high-fidelity high-resolution submillimeter images of Andromeda. In this paper, we describe the survey, the method we have developed for combining the space-based and ground-based data, and present the first HASHTAG images of Andromeda at 450 and 850 µm. We also have created a method to predict the CO(J=3–2) line flux across M 31, which contaminates the 850 µm band. We find that while normally the contamination is below our sensitivity limit, the contamination can be significant (up to 28%) in a few of the brightest regions of the 10 kpc ring. We therefore also provide images with the predicted line emission removed.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet