The origins of [C ii] emission in local star-forming galaxies
Astrophysical Journal Institute of Physics 845 (2017)
Abstract:
The [C II] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C II] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C II] emission remains unclear because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C II] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N II] 205 μm fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C II]/[N II] 122 μm. Using the FIR [C II] and [N II] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel) and Beyond the Peak Herschel programs, we show that 60%–80% of [C II] emission originates from neutral gas. We find that the fraction of [C II] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C II] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.Dust and gas in star-forming galaxies at z ~ 3: Extending galaxy uniformity to 11.5 billion years
Astronomy & Astrophysics EDP Sciences 603 (2017) A93
Abstract:
We present millimetre dust emission measurements of two Lyman-break galaxies at z ∼ 3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlensed, UV-selected, main sequence (MS) galaxies at z = 3. The SED modelling of the two sources confirms previous findings, based on stacked ensembles, of an increasing mean radiation field (U) with redshift, consistent with a rapidly decreasing gas metallicity in z > 2 galaxies. Complementing our study with CO[J = 3 → 2] emission line observations, we have measured the molecular gas mass reservoir (M H 2 ) of the systems using three independent approaches: 1) CO line observations; 2) the dust to gas mass ratio vs. metallicity relation; and 3) a single band, dust emission flux on the Rayleigh-Jeans side of the SED. All techniques return consistent M H 2 estimates within a factor of two or less, yielding gas depletion time-scales (τ dep ≈ 0.35 Gyr) and gas-to-stellar mass ratios (M H 2 /M ∗ ≈ 0.5-1) for our z ∼ 3 massive MS galaxies. The overall properties of our galaxies are consistent with trends and relations established at lower redshifts, extending the apparent uniformity of star-forming galaxies over the last 11.5 billion years.ALMA [NII] 205 micron Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7
(2017)
ALMA [N ii] 205 μm imaging spectroscopy of the interacting galaxy system BRI 1202-0725 at redshift 4.7
Astrophysical Journal Letters Institute of Physics 842:2 (2017) L16