Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
the lab

Dr Rob Smith

Associate Professor

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Dipolar Quantum Gases group
robert.smith@physics.ox.ac.uk
Telephone: 01865 272206
Clarendon Laboratory, room 512.10.33,241
  • About
  • Publications

Universal Prethermal Dynamics of Bose Gases Quenched to Unitarity

Nature Nature Publishing Group 563 (2018) 221-224

Authors:

Christoph Eigen, Jake AP Glidden, Raphael Lopes, Eric A Cornell, Robert P Smith, Zoran Hadzibabic

Abstract:

Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, e.g. following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, thanks to tuneable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they give access to the unitary regime where the interactions are as strong as allowed by quantum mechanics. Following years of experiments on unitary Fermi gases, unitary Bose gases have recently emerged as a new experimental frontier. They promise exciting new possibilities, including universal physics solely controlled by the gas density and novel forms of superfluidity. Here, through momentum- and time-resolved studies, we explore both degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples we observe universal post-quench dynamics in agreement with the emergence of a prethermal state with a universal nonzero condensed fraction. In thermal gases, dynamic and thermodynamic properties generically depend on both the gas density n and temperature T, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, the total quench-induced correlation energy is independent of the gas temperature. Our measurements provide quantitative benchmarks and new challenges for theoretical understanding.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

From single-particle excitations to sound waves in a box-trapped atomic Bose-Einstein condensate

(2018)

Authors:

Samuel J Garratt, Christoph Eigen, Jinyi Zhang, Patrik Turzák, Raphael Lopes, Robert P Smith, Zoran Hadzibabic, Nir Navon
More details from the publisher

Synthetic dissipation and cascade fluxes in a turbulent quantum gas

(2018)

Authors:

Nir Navon, Christoph Eigen, Jinyi Zhang, Raphael Lopes, Alexander L Gaunt, Kazuya Fujimoto, Makoto Tsubota, Robert P Smith, Zoran Hadzibabic
More details from the publisher

Elliptic flow in a strongly interacting normal Bose gas

Physical Review A American Physical Society 98:1 (2018) 011601(R)

Authors:

RJ Fletcher, J Man, R Lopes, P Christodoulou, J Schmitt, M Sohmen, N Navon, Robert Smith, Z Hadzibabic

Abstract:

We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that this hydrodynamic phenomenon is for all interaction strengths fully described by a microscopic kinetic model with no free parameters. The success of this description crucially relies on taking into account the reduced thermalizing power of elastic collisions in a strongly interacting gas, for which we derive an analytical theory. We also perform time-resolved measurements that directly reveal the dynamics of the energy transfer between the different expansion axes.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Universal Prethermal Dynamics of Bose Gases Quenched to Unitarity

(2018)

Authors:

Christoph Eigen, Jake AP Glidden, Raphael Lopes, Eric A Cornell, Robert P Smith, Zoran Hadzibabic
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet