The Small-Scale Mid-Infrared Emission of Low-Luminosity AGN
GALACTIC CENTER: A WINDOW TO THE NUCLEAR ENVIRONMENT OF DISK GALAXIES 439 (2011) 487-+
A high spatial resolution mid-infrared spectroscopic study of the nuclei and star-forming regions in luminous infrared galaxies
Astrophysical Journal 711:1 (2010) 328-349
Abstract:
We present a high spatial (diffraction-limited) resolution (∼0″.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of four local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ∼100pc, which allow us to resolve their nuclear regions and separate the active galactic nucleus (AGN) emission from that of the star formation (SF). We compare (qualitatively and quantitatively) our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. Star-forming regions and AGNs show distinct features in the MIR spectra, and we spatially separate these, which is not possible using the Spitzer data. The 9.7 μm silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [Ne II]12.81 μm luminosity surface density is tightly and directly correlated with that of Paα for the LIRG star-forming regions (slope of 1.00 ± 0.02). Although the 11.3 μmPAH feature shows also a trend with Paα, this is not common for all the regions and the slope is significantly lower. We also find that the [Ne II]12.81 μm/Paα ratio does not depend on the Paα equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [Ne II]12.81 μm emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3 μmPAH/Paα ratio increases for smaller values of the Paα EW (increasing ages), indicating that the 11.3 μmPAH feature can also be excited by older stars than those responsible for the Paα emission. Finally, more data are needed in order to address the different physical processes (age of the stellar populations, hardness and intensity of the radiation field, mass of the star-forming regions) affecting the energetics of the polycyclic aromatic hydrocarbon features in a statistical way. Additional high spatial resolution observations are essential to investigating the SF in local LIRGs at the smallest scales and determining ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs, and submillimiter galaxies and therefore belong to the same galaxy population. © 2010. The American Astronomical Society. All rights reserved.Erratum: Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster
\mnras 399 (2009) 2288-2288-2288-2288
Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster
Monthly Notices of the Royal Astronomical Society 392:2 (2009) 817-846
Abstract:
We present near-infrared long-slit and multislit spectra of low-mass brown dwarf candidates in the Orion nebula cluster. The long-slit data were observed in the H and K bands using NIRI on the Gemini-North Telescope. The multi-object spectroscopic observations were made using IRIS2 on the Anglo-Australian Telescope at H band. We develop a spectral typing scheme based on optically calibrated, near-infrared spectra of young sources in the Taurus and IC 348 star-forming regions with spectral types M3.0 to M9.5. We apply our spectral typing scheme to 52 sources, including previously published UKIRT and GNIRS spectra. 40 objects show strong water absorption with spectral types of M3 to >M9.5. The latest type objects are provisionally classified as early L types. We plot our sources on Hertzsprung-Russell diagrams overlaid with theoretical pre-main-sequence isochrones. The majority of our objects lie close to or above the 1-Myr isochrone, leading to an average cluster age that is <1 Myr. We find 38 sources lie at or below the hydrogen-burning limit (0.075 M ⊙). 10 sources potentially have masses below the deuterium-burning limit (0.012 M⊙). We use a Monte Carlo approach to model the observed luminosity function with a variety of cluster age and mass distributions. The lowest χ2 values are produced by an age distribution centred at 1 Myr, with a mass function that declines at substellar masses according to an Mα power law in the range α = 0.3-0.6. We find that truncating the mass function at 0.012 M ⊙ produces luminosity functions that are starved of the faintest magnitudes, even when using bimodal age populations that contain 10-Myr-old sources. The results of these Monte Carlo simulations therefore support the existence of a planetary mass population in the ONC. © 2008 RAS.The spatial variation of the 3-μm dust features in Circinus
Monthly Notices of the Royal Astronomical Society 394:4 (2009) 2043-2049