The Gemini Deep Planet Survey
Astrophysical Journal 670:2 (2007) 1367-1390
Abstract:
We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around 85 nearby young stars. The observations were obtained with the Altair adaptive optics sys- tem at the Gemini North telescope, and angular differential imaging was used to suppress the speckle noise of the central star. Typically, the observations are sensitive to angular separations beyond 0.5″ with 5 σ contrast sensitivities in magnitude difference at 1.6 μm of 9.5 at 0.5″, 12.9 at 1″, 15.0 at 2″, and 16.5 at 5″. These sensitivities are sufficient to detect planets more massive than 2 MJ with a projected separation in the range 40-200 AU around a typical target. Second-epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results is presented. Assuming a planet mass distribution dn/dm oc m-1.2 anda semimajor-axis distribution dn/da ∝ a-1, the 95% credible upper limits on the fraction of stars with at least one planet of mass 0.5-13 MJ are 0.28 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.093 for 50-250 AU; this result is weakly dependent on the semimajor-axis distribution power-law index. The 95% credible interval for the fraction of stars with at least one brown dwarf companion having a semimajor axis in the range 25-250 AU is 0.019-0.015+0.083 irrespective of any assumption on the mass and semimajor-axis distributions. The observations made as part of this survey have resolved the stars HD 14802, HD 166181, and HD 213845 into binaries for the first time. © 2007. The American Astronomical Society. All rights reserved.Gemini mid-IR polarimetry of NGC 1068: Polarized structures around the nucleus
Astrophysical Journal 661:1 II (2007)
Abstract:
We present diffraction-limited, 10 μm imaging polarimetry data for the central regions of the archetypal Seyfert active galactic nucleus NGC 1068. The position angle of polarization is consistent with three dominant polarizing mechanisms. We identify three distinct regions of polarization: (1) north of the nucleus, arising from aligned dust in the narrow emission line region, (2) south, east, and west of the nucleus, consistent with dust being channeled toward the central engine, and (3) a central minimum of polarization consistent with a compact (≤22 pc) torus. These observations provide continuity between the geometrically and optically thick torus and the host galaxy's nuclear environments. These images represent the first published mid-IR polarimetry from an 8 m-class telescope and illustrate the potential of such observations. © 2007. The American Astronomical Society. All rights reserved.An optical spectroscopic HR diagram for low-mass stars and brown dwarfs in Orion
Monthly Notices of the Royal Astronomical Society 381:3 (2007) 1077-1092
Abstract:
The masses and temperatures of young low-mass stars and brown dwarfs in star-forming regions are not yet well established because of uncertainties in the age of individual objects and the spectral type-temperature scale appropriate for objects with ages of only a few Myr. Using multi-object optical spectroscopy, 45 low-mass stars and brown dwarfs in the Trapezium Cluster in Orion have been classified and 44 of these confirmed as bona fide cluster members. The spectral types obtained have been converted to effective temperatures using a temperature scale intermediate between those of dwarfs and giants, which is suitable for young pre-main-sequence objects. The objects have been placed on a Hertzsprung-Russell (HR) diagram overlaid with theoretical isochrones. The low-mass stars and the higher mass substellar objects are found to be clustered around the 1 Myr isochrone, while many of the lower mass substellar objects are located well above this isochrone. An average age of 1 Myr is found for the majority of the objects. Assuming coevality of the sources and an average age of 1 Myr, the masses of the objects have been estimated and range from 0.018 to 0.44 M⊙. The spectra also allow an investigation of the surface gravity of the objects by measurement of the sodium doublet equivalent width. With one possible exception, all objects have low gravities, in line with young ages, and the Na indices for the Trapezium objects lie systematically below those of young stars and brown dwarfs in Chamaeleon, suggesting that the 820 nm Na index may provide a sensitive means of estimating ages in young clusters. © 2007 RAS.Optical spectroscopic classification and membership of young M dwarfs in star-forming regions
Monthly Notices of the Royal Astronomical Society 381:3 (2007) 1067-1076
Abstract:
The spectral type is a key parameter in calibrating the temperature which is required to estimate the mass of young stars and brown dwarfs. We describe an approach developed to classify low-mass stars and brown dwarfs in the Trapezium Cluster using red optical spectra, which can be applied to other star-forming regions. The classification uses two methods for greater accuracy: the use of narrow-band spectral indices which rely on the variation of the strength of molecular lines with spectral type and a comparison with other previously classified young, low-mass objects in the Chamaeleon I star-forming region. We have investigated and compared many different molecular indices and have identified a small number of indices which work well for classifying M-type objects in nebular regions. The indices are calibrated for young, pre-main-sequence objects whose spectra are affected by their lower surface gravities compared with those on the main sequence. Spectral types obtained are essentially independent of both reddening and nebular emission lines. Confirmation of candidate young stars and brown dwarfs as bona fide cluster members may be accomplished with moderate resolution spectra in the optical region by an analysis of the strength of the gravity-sensitive Na doublet. It has been established that this feature is much weaker in these very young objects than in field dwarfs. A sodium spectral index is used to estimate the surface gravity and to demonstrate quantitatively the difference between young (1-2 Myr) objects, and dwarf and giant field stars. © 2007 RAS.Silicate absorption in heavily obscured galaxy nuclei
Monthly Notices of the Royal Astronomical Society 375:1 (2007) 99-104