Characterizing extreme compositions on the moon using thermal infrared spectroscopy
Journal of Geophysical Research: Planets American Geophysical Union 130:5 (2025) e2024JE008814
Abstract:
The ultramafic and silicic rocks on the lunar surface have played an important role in expanding our knowledge regarding its thermal and magmatic evolution. The surface identification and quantification of these rocks on the global scale can significantly improve our understanding of their spatial extents, relationships and formation mechanisms. Christiansen feature positions using Diviner data have aided in global identification and mapping of relatively silica-rich and silica-poor lithologies on the lunar surface. We have used laboratory thermal infrared spectra of silicic and ultramafic rocks to analyze the variation in Christiansen feature in simulated lunar environment. We have characterized the absolute bulk silica content of the rocks and minerals and their Silica, Calcium, Ferrous iron, Magnesium index. We find that they are linearly correlated to the Christiansen feature despite particle size variations. Furthermore, we find that the Christiansen feature shifts toward longer wavelengths with increase in ilmenite content in the ilmenite-basalt mixtures. We have explored the effect of instrument's spectral band position on the accuracy of the parabolic method that is currently used for the estimation of Christiansen feature position from Diviner data. We find that this method performs poorly for the estimation of the Christiansen feature for ultramafic and silicic rocks and minerals/mineral mixtures. We propose using a machine learning algorithm to estimate the Christiansen feature with higher accuracy for all kinds of silicate compositions on the Moon. This method will lead to increased accuracy in absolute quantification of bulk silicate composition of the lunar surface at varying spatial scales.Returning to Mars with BEBOP (Broadband Exploration with Bolometric Optics)
Copernicus Publications (2024)
Extended Silicic Volcanism in the Gruithuisen Region—Revisiting the Composition and Thermophysical Properties of Gruithuisen Domes on the Moon
The Planetary Science Journal IOP Publishing 5:6 (2024) 132
Abstract:
The formation mechanisms, extent, and compositions of red spots on the lunar surface have intrigued the lunar community for decades. By identifying a new dome and another silicic crater in the highlands nearby, we find that the silicic volcanism in the Gruithuisen region extends beyond the three major domes. Our observations indicate that the Gruithuisen domes have low iron and titanium contents. They are enveloped by ejecta from surrounding regions and host silica-rich material excavated by the young craters consistent with previous work. Our boulder maps of the Gamma dome display a high boulder count and indicate that the Diviner rock abundance maps are only sensitive to boulders larger than ∼2 m. The H-parameter values are sensitive to presence of rocks and may be a better indicator of rocks at submeter scales. The Delta dome has gentle slopes, lower rock abundance, and one young crater, and it could serve as a safe and scientifically valuable site for landing and exploration of the domes and nearby region. The dome also displays anomalously high H-parameter in the same region as the crater, indicating the potential presence of pyroclastic materials. We observe up to 200 ppm of OH/H2O on the domes and nearby mare despite the presence of a weak magnetic field to the south of Delta dome, further supporting the potential presence of pyroclastics in the region. This study could potentially aid in logistical and scientific decisions of the future NASA missions in the region.Destination: Space! A Virtual Flash Talk Series
Copernicus Publications (2024)
The bulk mineralogy, elemental composition, and water content of the Winchcombe CM chondrite fall
Meteoritics and Planetary Science Wiley 59:5 (2024) 1006-1028