On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2000
Abstract:
Abstract Despite the vast amount of energy released by active galactic nuclei (AGN), their role in early galaxy formation and in regulating the growth of supermassive black holes (SMBHs) remains poorly understood. Through new high-resolution zoom-in cosmological simulations, we follow the co-evolution of 105 M⊙ black hole seeds with their host dwarf galaxy. We model ionizing feedback from a Pop III.1 progenitor, applicable to a wide range of internally or externally irradiated SMBH formation scenarios. The simulated suite progressively spans physics ranging from no AGN feedback to more complex setups including thermal, kinetic and radiative feedback – explored for both low and enhanced AGN power. Across all our models, we find that black hole seeds efficiently reach masses of ∼107 M⊙ within a ∼1010 M⊙ halo by z = 8. Although they exhibit notably different mass growth histories, these latter seem unimpeded by the presence of AGN feedback. The simulation including radiative feedback is the most distinct, with super-Eddington episodes driving fast and mass-loaded gas outflows (exceeding 2500 km s−1) up to ∼50 kpc, along with minor stellar mass suppression in the host galaxy. Our measurements are in broad agreement with moderate luminosity quasars recently observed by JWST, producing overmassive black holes (SMBH-to-galaxy mass ratios 0.01 − 1), dynamical masses of ∼109.5 M⊙, stellar masses of ∼108.5 M⊙, and high, though short-lived, Eddington fraction accretion rates. These results advocate for a scenario where AGN feedback allows for rapid SMBH growth during the reionisation era, while driving winds that extend deep into the intergalactic medium – shaping host galaxies as well as more distant surroundings.The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960
Abstract:
Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.MEGATRON: the impact of non-equilibrium effects and local radiation fields on the circumgalactic medium at cosmic noon
(2025)
MEGATRON: The environments of Population III stars at Cosmic Dawn and their connection to present day galaxies
(2025)
MEGATRON: Disentangling Physical Processes and Observational Bias in the Multi-Phase ISM of High-Redshift Galaxies
(2025)