Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

The impact of cosmic rays on the interstellar medium and galactic outflows of Milky Way analogues

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:4 (2024) 3617-3640

Authors:

Francisco Rodríguez Montero, Sergio Martin-Alvarez, Adrianne Slyz, Julien Devriendt, Yohan Dubois, Debora Sijacki

Abstract:

During the last decade, cosmological simulations have managed to reproduce realistic and morphologically diverse galaxies, spanning the Hubble sequence. Central to this success was a phenomenological calibration of the few included feedback processes, while glossing over higher complexity baryonic physics. This approach diminishes the predictive power of such simulations, preventing to further our understanding of galaxy formation. To tackle this fundamental issue, we investigate the impact of cosmic rays (CRs) and magnetic fields on the interstellar medium and the launching of outflows in a cosmological zoom-in simulation of a Milky Way-like galaxy. We find that including CRs decreases the stellar mass of the galaxy by a factor of 10 at high redshift and ∼4 at cosmic noon, leading to a stellar mass to halo mass ratio in good agreement with abundance matching models. Such decrease is caused by two effects: (i) a reduction of cold, high-density, star-forming gas, and (ii) a larger fraction of supernova (SN) events exploding at lower densities, where they have a higher impact. SN-injected CRs produce enhanced, multiphase galactic outflows, which are accelerated by CR pressure gradients in the circumgalactic medium of the galaxy. While the mass budget of these outflows is dominated by the warm ionized gas, warm neutral and cold gas phases contribute significantly at high redshifts. Importantly, our work shows that future JWST observations of galaxies and their multiphase outflows across cosmic time have the ability to constrain the role of CRs in regulating star formation.

More details from the publisher
Details from ORA

The physics of indirect estimators of Lyman Continuum escape and their application to high-redshift JWST galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 529:4 (2024) 3751-3767

Authors:

Nicholas Choustikov, Harley Katz, Aayush Saxena, Alex J Cameron, Julien Devriendt, Adrianne Slyz, Joki Rosdahl, Jeremy Blaizot, Leo Michel-Dansac

Abstract:

Reliable indirect diagnostics of LyC photon escape from galaxies are required to understand which sources were the dominant contributors to reionization. While multiple LyC escape fraction (fesc) indicators have been proposed to trace favourable conditions for LyC leakage from the interstellar medium of low-redshift ‘analogue’ galaxies, it remains unclear whether these are applicable at high redshifts where LyC emission cannot be directly observed. Using a library of 14 120 mock spectra of star-forming galaxies with redshifts 4.64 ≤ z ≤ 10 from the SPHINX20 cosmological radiation hydrodynamics simulation, we develop a framework for the physics that leads to high fesc. We investigate LyC leakage from our galaxies based on the criteria that successful LyC escape diagnostics must (i) track a high-specific star formation rate, (ii) be sensitive to stellar population age in the range 3.5–10 Myr representing the times when supernova first explode to when LyC production significantly drops, and (iii) include a proxy for neutral gas content and gas density in the interstellar medium. O32, ΣSFR, MUV, and H β equivalent width select for one or fewer of our criteria, rendering them either necessary but insufficient or generally poor diagnostics. In contrast, UV slope (β), and E(B − V) match two or more of our criteria, rendering them good fesc diagnostics (albeit with significant scatter). Using our library, we build a quantitative model for predicting fesc based on direct observables. When applied to bright z > 6 Ly α emitters observed with JWST, we find that the majority of them have 𝑓esc≲10 per cent⁠.

More details from the publisher
Details from ORA
More details

Dwarf galaxies as a probe of a primordially magnetized Universe

(2024)

Authors:

Mahsa Sanati, Sergio Martin-Alvarez, Jennifer Schober, Yves Revaz, Adrianne Slyz, Julien Devriendt
More details from the publisher
Details from ArXiV

Boosting galactic outflows with enhanced resolution

Monthly Notices of the Royal Astronomical Society Oxford University Press 528:3 (2024) 5412-5431

Authors:

Martin Rey, Harley Katz, Alex Cameron, Julien Devriendt, Adrianne Slyz

Abstract:

We study how better resolving the cooling length of galactic outflows affect their energetics. We perform radiativehydrodynamical galaxy formation simulations of an isolated dwarf galaxy (M = 108 M) with the RAMSES-RTZ code, accounting for non-equilibrium cooling and chemistry coupled to radiative transfer. Our simulations reach a spatial resolution of 18 pc in the interstellar medium (ISM) using a traditional quasi-Lagrangian scheme. We further implement a new adaptive mesh refinement strategy to resolve the local gas cooling length, allowing us to gradually increase the resolution in the stellar-feedback-powered outflows, from ≥ 200 pc to 18 pc. The propagation of outflows into the inner circumgalactic medium is significantly modified by this additional resolution, but the ISM, star formation, and feedback remain by and large the same. With increasing resolution in the diffuse gas, the hot outflowing phase (T > 8 × 104 K) systematically reaches overall higher temperatures and stays hotter for longer as it propagates outwards. This leads to two-fold increases in the time-averaged mass and metal outflow loading factors away from the galaxy (r = 5 kpc), a five-fold increase in the average energy loading factor, and a ≈50 per cent increase in the number of sightlines with NO VI ≥ 1013 cm−2. Such a significant boost to the energetics of outflows without new feedback mechanisms or channels strongly motivates future studies quantifying the efficiency with which better-resolved multiphase outflows regulate galactic star formation in a cosmological context.
More details from the publisher
Details from ORA
More details

The Great Escape: Understanding the Connection Between Ly$\alpha$ Emission and LyC Escape in Simulated JWST Analogues

(2024)

Authors:

Nicholas Choustikov, Harley Katz, Aayush Saxena, Thibault Garel, Julien Devriendt, Adrianne Slyz, Taysun Kimm, Jeremy Blaizot, Joki Rosdahl
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet