Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals

Journal of Materials Chemistry A Royal Society of Chemistry 5:3 (2016) 1192-1200

Authors:

TM Ng, MT Weller, GP Kissling, LM Peter, P Dale, F Babbe, J de Wild, Bernard Wenger, Henry J Snaith, D Lane

Abstract:

Single crystals of Cu2ZnSnS4 (CZTS) have been grown by iodine vapor transport with and without addition of NaI. Crystals with tin-rich copper-poor and with zinc-rich copper-poor stoichiometries were obtained. The crystals were characterized by single crystal X-ray diffraction, energy-dispersive X-ray spectroscopy, photocurrent spectroscopy and electroreflectance spectroscopy using electrolyte contacts as well as by spectroscopic ellipsometry, Raman spectroscopy and photoluminescence spectroscopy (PL)/decay. Near-resonance Raman spectra indicate that the CZTS crystals adopt the kesterite structure with near-equilibrium residual disorder. The corrected external quantum efficiency of the p-type crystals measured by photocurrent spectroscopy approaches 100% close to the bandgap energy, indicating efficient carrier collection. The bandgap of the CZTS crystals estimated from the external quantum efficiency spectrum measured using an electrolyte contact was found to be 1.64–1.68 eV. An additional sub-bandgap photocurrent response (Urbach tail) was attributed to sub bandgap defect states. The room temperature PL of the crystals was attributed to radiative recombination via tail states, with lifetimes in the nanosecond range. At high excitation intensities, the PL spectrum also showed evidence of direct band to band transitions at ∼1.6 eV with a shorter decay time. Electrolyte electroreflectance spectra and spectra of the third derivative of the optical dielectric constant in the bandgap region were fitted to two optical transitions at 1.71 and 1.81 eV suggesting a larger valence band splitting than predicted theoretically. The high values of the EER broadening parameters (192 meV) indicate residual disorder consistent with the existence of tail states.
More details from the publisher
Details from ORA
More details
More details

Reproducible planar heterojunction solar cells based on one-step solution-processed methylammonium lead halide perovskites

Chemistry of Materials American Chemical Society 29:1 (2016) 462-473

Authors:

Sai Bai, Nobuya Sakai, Wei Zhang, Zhiping Wang, Jacob T-W Wang, Feng Gao, Henry J Snaith

Abstract:

Metal halide perovskites have been demonstrated as one of the most promising materials for low-cost and high-performance photovoltaic applications. However, due to the susceptible crystallization process of perovskite films on planar substrates and the high sensitivity of the physical and optoelectronic nature of the internal interfaces within the devices, researchers in different laboratories still experience poor reproducibility in fabricating efficient perovskite solar cells with planar heterojunction device structures. In this methods paper, we present detailed information on the reagents, equipment, and procedures for the fabrication of planar perovskite solar cells in both “regular” n-i-p and “inverted” p-i-n architectures based on one-step solution-processed methylammonium lead triiodide (MAPbI3) perovskite films. We discuss key parameters affecting the crystallization of perovskite and the device interfaces. This methods paper will provide a guideline for the reproducible fabrication of planar heterojunction solar cells based on MAPbI3perovskite films. We believe that the shared experience on MA-based perovskite films and planar solar cells will be also useful for the optimization process of perovskites with varied compositions and other emerging perovskite-based optoelectronic devices.
More details from the publisher
Details from ORA
More details

Room-temperature atomic layer deposition of Al2 O3 : Impact on efficiency, stability and surface properties in perovskite solar cells

ChemSusChem Wiley 9:24 (2016) 3401-3406

Authors:

M Kot, C Das, Zhiping Wang, K Henkel, Z Rouissi, K Wojciechowski, Henry J Snaith, D Schmeisser

Abstract:

In this work, solar cells with a freshly made CH3 NH3 PbI3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al2 O3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al2 O3 -covered perovskite films showed enhanced ambient air stability.
More details from the publisher
Details from ORA
More details
More details

Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers

Advanced Materials Wiley 29:5 (2016)

Authors:

Zhiping Wang, David P McMeekin, Nobuya Sakai, Stephan van Reenen, Konrad Wojciechowski, Jay B Patel, Michael Johnston, Henry J Snaith

Abstract:

Air-stable doping of the n-type fullerene layer in an n-i-p planar heterojunction perovskite device is capable of enhancing device efficiency and improving device stability. Employing a (HC(NH2 )2 )0.83 Cs0.17 Pb(I0.6 Br0.4 )3 perovskite as the photoactive layer, glass-glass laminated devices are reported, which sustain 80% of their "post burn-in" efficiency over 3400 h under full sun illumination in ambient conditions.
More details from the publisher
Details from ORA
More details
More details

Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties

Energy and Environmental Science Royal Society of Chemistry 10:1 (2016) 361-369

Authors:

Waqaas Rehman, David P McMeekin, Jay B Patel, Rebecca L Milot, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Lead mixed halide perovskites are highly promising semiconductors for both multi-junction photovoltaic and light emitting applications due to their tunable band gaps, with emission and absorption energies spanning the UV-visible to near IR regions. However, many such perovskites exhibit unwanted halide segregation under photoillumination, the cause of which is still unclear. In our study, we establish crucial links between crystal phase stability, photostability and optoelectronic properties of the mixed-cation lead mixed-halide perovskite CsyFA(1-y)Pb(BrxI(1-x))3. We demonstrate a region for caesium content between 0.10 < y < 0.30 which features high crystalline quality, long chargecarrier lifetimes and high charge-carrier mobilities. Importantly, we show that for such high-quality perovskites, photoinduced halide segregation is strongly suppressed, suggesting that high crystalline quality is a prerequisite for good optoelectronic quality and band gap stability. We propose that regions of short-range crystalline order aid halide segregation, possibly by releasing lattice strain between iodide rich and bromide rich domains. For an optimized caesium content, we explore the orthogonal halide-variation parameter space for Cs0.17FA0.83Pb(BrxI(1-x))3 perovskites. We demonstrate excellent charge-carrier mobilities (11-40 cm2 V^−1 s^−1) and diffusion lengths (0.8 - 4.4 µm) under solar conditions across the full iodide-bromide tuning range. Therefore, the addition of caesium yields a more photostable perovskite system whose absorption onsets can be tuned for bandgap-optimized tandem solar cells.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet