Fullerene derivative integration controls morphological behaviour and recombination losses in non-fullerene acceptor-based organic solar cells
Materials Horizons Royal Society of Chemistry (RSC) (2025)
Abstract:
The complex and varied relationship found in intermolecular interactions within the photo-active layers plays a decisive role in determining the photovoltaic energy conversion and overall device performance of organic solar cells (OSCs). Among different approaches, the ternary blend strategy serves as an effective technique to control the morphology within the active layer in OSCs. In this work, PM6:L8-BO is used as the main host system (binary) while the fullerene molecules PC61BM and PCBC6 are introduced to form ternary OSCs. The results highlight the important role of fullerenes in enhancing the performance of binary non-fullerene acceptor-based cells by suppressing trap-assisted recombination and optimizing the active layer morphology. The improved film phase microstructure, enabled by fullerene derivatives with higher lowest unoccupied molecular orbital (LUMO) energy levels in comparison to the host acceptor (L8-BO), facilitates more efficient charge collection and reduced non-radiative recombination. This results in an increase in the fill factor (FF) and open circuit voltage (Voc) in the ternary OSCs. Consequently, power conversion efficiencies (PCEs) of binary OSCs were increased from 17.28% to 18.10% and 18.38% for the PC61BM- and PCBC6-based ternary OSCs, respectively. Furthermore, the addition of the fullerene molecules in the active layer provided the devices with enhanced long-term photo and thermal stability. The ternary OSCs demonstrated degradation pathways distinct from those of binary cells (ISOS-L1-I and ISOS-D2-I protocols), as identified through in situ ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Molecular dynamics (MD) simulations, for the first time, reveal the significant role of fullerene molecules as morphology regulators in non-fullerene acceptor (NFA)-based systems. Their presence ensures improved dispersion of blend components and promotes more uniform and isotropic thermal and mechanical behaviour. Finally, mini-modules with active areas of 3.8 cm2 were fabricated, achieving PCEs of 12.90%, 13.32%, and 13.70% for the binary and ternary cells using PC61BM-and PCBC6-based ternary cells, respectively. Our results demonstrate that regulation of the morphology of the photo-active layer in OSCs through fullerene incorporation reduces the non-radiative energy loss pathways, enabling high-efficiency, stable and scalable OSCs.Closed-loop manufacturing for sustainable perovskite photovoltaics
Nature Reviews Materials Springer Nature (2025) 1-16
Abstract:
Perovskite solar cells (PSCs) are emerging as a particularly promising technology to enhance the world’s renewable energy generation capacity. As PSCs are transitioning from research to industrial-scale production, there is an important opportunity to establish sustainable manufacturing pathways. Here, we present a closed-loop framework for the development of environmentally sustainable PSCs and highlight strategies to achieve this vision. First, we analyse the sourcing of raw materials and compare two established PSC fabrication techniques, vapour-phase deposition and solution processing, evaluating their respective advantages and limitations in terms of economic feasibility and environmental impact. Second, we examine solution processing methods, focusing on solvent system design for the preparation of high-quality perovskite films and on the use of non-hazardous or less-hazardous solvents. Third, we examine potential lead-release concerns during PSC operation and discuss approaches to minimize associated environmental risks. Fourth, we summarize effective recycling methods for main PSC components to support a circular production model. Finally, we identify key challenges and outline future research directions to achieve fully sustainable, closed-loop PSC technologies.Solar cells that combine multiple perovskite layers surpass 30% efficiency
Nature Springer Nature 648:8094 (2025) 544-546
Trion Formation Hampers Single Quantum Dot Performance in Silane-Coated FAPbBr3 Quantum Dots
(2025)
Device Performance of Emerging Photovoltaic Materials (Version 6)
Advanced Energy Materials Wiley (2025) e05525