Hybrid Perovskite Solar Cells
Japan Society of Applied Physics (2013)
Efficient planar heterojunction perovskite solar cells by vapour deposition
Nature Springer Science and Business Media LLC 501:7467 (2013) 395-398
Efficient planar heterojunction perovskite solar cells by vapour deposition
Nature 501:7467 (2013) 395-398
Abstract:
Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures. © 2013 Macmillan Publishers Limited. All rights reserved.Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.
Nano Lett 13:9 (2013) 4505-4510
Abstract:
Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is critically important for commercialization. Here, we demonstrate photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%. We attribute the origin of enhanced photocurrent to a previously unobserved and unexpected mechanism of reduced exciton binding energy with the incorporation of the metal nanoparticles, rather than enhanced light absorption. Our findings represent a new aspect and lever for the application of metal nanoparticles in photovoltaics and could lead to facile tuning of exciton binding energies in perovskite semiconductors.Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells.
J Am Chem Soc 135:36 (2013) 13538-13548