Ion-coordinating sensitizer in solid-state hybrid solar cells.
Angew Chem Int Ed Engl 44:39 (2005) 6413-6417
Ion‐Coordinating Sensitizer in Solid‐State Hybrid Solar Cells
Angewandte Chemie Wiley 117:39 (2005) 6571-6575
Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes.
Nano Lett 5:9 (2005) 1653-1657
Abstract:
We present a new approach to achieving order in molecular semiconductors via alignment of polymer chains using surface-initiated polymerization. Polyacrylate brushes grown from transparent conducting electrodes, with triarylamine side groups as hole-transporting components, show characteristics of high mobilities for hole transport. Solution processing a second component with favorable enthalpic interactions can form a composite with mesoscale order and be exploited for heterojunction diodes. We find substantial uptake of CdSe nanocrystals (with diameter in the range 2.5-2.8 nm), and such composites show photovoltaic quantum efficiencies of up to 50%.Morphological and electronic consequences of modifications to the polymer anode 'PEDOT:PSS'
Polymer 46:8 (2005) 2573-2578
Abstract:
We present a microscopic and electronic investigation of the polymeric anode poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) used as an electrode in photovoltaic and single carrier diodes. PEDOT:PSS is processed from aqueous solution as a colloidal dispersion with excess PSS present. We modify the PEDOT:PSS solution by the addition of a high boiling point alcohol, glycerol, which is known to increase the conductivity of the spin-coated film. Atomic force microscopy indicates swelling and greater aggregation of the PEDOT-rich colloidal particles found in this system. Current-voltage characteristics of 'hole-transporting' diodes, formed with gold contacts, suggest less surface enrichment of PSS in the glycerol modified electrode. Through Kelvin probe microscopy, we find the surface potential of glycerol modified PEDOT:PSS decreases by approximately 0.12 eV, which we assign to a reduction in surface enrichment by PSS. Photovoltaic diodes, using a PFB:F8BT polymer blend as the photo-active layer, and glycerol modified PEDOT:PSS anodes are significantly improved as compared to those with unmodified PEDOT:PSS anodes. This is likely to be due to improved hole-injection from the active polymer film into the PEDOT:PSS anode. This emphasises the electronic consequences of the morphological reorientation of the PEDOT and PSS. © 2005 Published by Elsevier Ltd.Vertically segregated hybrid blends for photovoltaic devices with improved efficiency
Journal of Applied Physics 97:1 (2005)