Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals.
Nature Communications Springer Nature 8 (2017) 590
Abstract:
Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers
Journal of Physical Chemistry C American Chemical Society 121:49 (2017) 27256-27262
Abstract:
We demonstrate a monolithic tandem solar cell by sequentially depositing a higher-bandgap (2.3 eV) CH3NH3PbBr3subcell and a lower-bandgap (1.55 eV) CH3NH3PbI3subcell bandgap perovskite cells, in conjugation with a solution-processed organic charge carrier recombination layer, which serves to protect the underlying subcell and allows for voltage addition of the two subcells. Owing to the low-loss series connection, we achieve a large open-circuit voltage of 1.96 V. Through optical and electronic modeling, we estimate the feasible efficiency of this device architecture to be 25.9%, achievable with integrating a best-in-class CH3NH3PbI3sub cell and a 2.05 eV wide bandgap perovskite cell with an optimized optical structure. Compared to previous reported all-perovskite tandem cells, we solely employ Pb-based perovskites, which although have wider band gap than Sn based perovskites, are not at risk of instability due to the unstable charge state of the Sn2+ion. Additionally, the bandgap combination we use in this study could be an advantage for triple junction cells on top of silicon. Our findings indicate that wide band gap all-perovskite tandems could be a feasible device structure for higher efficiency perovskite thin-film solar cells.Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals
Joule Elsevier 1:1 (2017) 155-167
Processing solvent-dependent electronic and structural properties of cesium lead triiodide thin films
Journal of Physical Chemistry Letters American Chemical Society 8 (2017) 4172-4176
Abstract:
Cesium lead triiodide (CsPbI3) is an attractive material for photovoltaic applications due to its appropriate band gap, strong optical absorption, and high thermal stability. However, the perovskite phase suffers from moisture induced structural instability. Previous studies have utilized a range of solvent systems to establish the role of solvent choice in structural instabilities. Despite this, effects of different solvents on the electronic structure of this material have not been compared. We report substantial chemical and compositional differences in thin films of CsPbI3 prepared from a range of solvent systems. We confirm via X-ray diffraction thin films formed from DMF, DMSO, and a mixture of these solvent systems share the same crystal structure. However, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and low energy ion scattering measurements reveal significant differences between films processed via different solvent systems. Our findings reveal the critical impact solvents have upon compositional stoichiometry and thin-film morphology.Efficient and stable perovskite solar cells using molybdenum tris(dithiolene)s as p-dopants for spiro-OMeTAD
ACS Energy Letters American Chemical Society 2:9 (2017) 2044-2050