Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Synergistic surface modification for high-efficiency perovskite nanocrystal light-emitting diodes: divalent metal ion doping and halide-based ligand passivation

Advanced Science Wiley 11:4 (2023) 2305383

Authors:

Woo Hyeon Jeong, Seongbeom Lee, Hochan Song, Xinyu Shen, Hyuk Choi, Yejung Choi, Jonghee Yang, Jung Won Yoon, Zhongkai Yu, Jihoon Kim, Gyeong Eun Seok, Jeongjae Lee, Hyun You Kim, Henry J Snaith, Hyosung Choi, Sung Heum Park, Bo Ram Lee

Abstract:

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+, Zn2+, and Hg2+) acetate salts and didodecyldimethylammonium (DDA+) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m−2, current efficiency of 65.48 cd A−1, external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The “organic–inorganic” hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

More details from the publisher
Details from ORA
More details
More details

Ultranarrow line width room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity

Nano Letters American Chemical Society 23:23 (2023) 10667-10673

Authors:

tristan Farrow, Robert Taylor

Abstract:

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

More details from the publisher
Details from ORA
More details
More details

Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells

Nature Energy Springer Nature 9:1 (2023) 70-80

Authors:

Junke Wang, Lewei Zeng, Dong Zhang, Aidan Maxwell, Hao Chen, Kunal Datta, Alessandro Caiazzo, Willemijn HM Remmerswaal, Nick RM Schipper, Zehua Chen, Kevin Ho, Akash Dasgupta, Gunnar Kusch, Riccardo Ollearo, Laura Bellini, Shuaifeng Hu, Zaiwei Wang, Chongwen Li, Sam Teale, Luke Grater, Bin Chen, Martijn M Wienk, Rachel A Oliver, Henry J Snaith, René AJ Janssen, Edward H Sargent

Abstract:

Monolithic all-perovskite triple-junction solar cells have the potential to deliver power conversion efficiencies beyond those of state-of-art double-junction tandems and well beyond the detailed-balance limit for single junctions. Today, however, their performance is limited by large deficits in open-circuit voltage and unfulfilled potential in both short-circuit current density and fill factor in the wide-bandgap perovskite sub cell. Here we find that halide heterogeneity—present even immediately following materials synthesis—plays a key role in interfacial non-radiative recombination and collection efficiency losses under prolonged illumination for Br-rich perovskites. We find that a diammonium halide salt, propane-1,3-diammonium iodide, introduced during film fabrication, improves halide homogenization in Br-rich perovskites, leading to enhanced operating stability and a record open-circuit voltage of 1.44 V in an inverted (p–i–n) device; ~86% of the detailed-balance limit for a bandgap of 1.97 eV. The efficient wide-bandgap sub cell enables the fabrication of monolithic all-perovskite triple-junction solar cells with an open-circuit voltage of 3.33 V and a champion PCE of 25.1% (23.87% certified quasi-steady-state efficiency).
More details from the publisher
Details from ORA
More details

Thermal Management Enables Stable Perovskite Nanocrystal Light‐Emitting Diodes with Novel Hole Transport Material (Small 45/2023)

Small Wiley 19:45 (2023)

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do‐Hoon Hwang, Bo Ram Lee
More details from the publisher

Benzylamine Passivation of Wide-Bandgap Perovskite

Fundacio Scito (2023)

Authors:

Suer Zhou, Henry Snaith, Yangwei Shi, Joel Smith, James Drysdale, Benjamin Gallant, Margherita Taddei, Harry Sansom, Junxiang Zhang, Stephen Barlow, Akash Dasgupta, Ashley Marshall, Jian Wang, David Ginger, Seth Marder, Declan McCarthy
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet