Hydrogen bond-assisted dual passivation for blue perovskite light-emitting diodes
ACS Energy Letters American Chemical Society 8:10 (2023) 4296-4303
Abstract:
Although significant progress has been made in the development of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs), blue PeLEDs exhibit inferior performance, owing to various defects and poor carrier injection in solution-processed perovskite films. Thus, this study incorporates dual-passivation additive diphenylphosphinamide (DPPA) into perovskite films, and through density functional theory calculations and experimental characterizations, DPPA has been proven to be an effective passivator. Its phosphine oxide group coordinates with unsaturated lead ions, passivating perovskite defects, while the amino group forms hydrogen bonds with adjacent halide ions, suppressing their migration and further strengthening the passivation effect. Blue quasi-two-dimensional PeLEDs based on DPPA-modified perovskite films achieved an external quantum efficiency of 12.31% with an emission peak at 486 nm. Moreover, the device operational lifetime was extended by 32% with more stable spectra owing to the decreased defect density and suppressed ion migration in the perovskite film.High-bandwidth perovskite photonic sources on silicon
Nature Photonics Springer Nature 17:9 (2023) 798-805
Impact of Interface Energetic Alignment and Mobile Ions on Charge Carrier Accumulation and Extraction in p‐i‐n Perovskite Solar Cells
Advanced Energy Materials Wiley 13:36 (2023)
Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt scalability perspective
Energy & Environmental Science Royal Society of Chemistry 16:10 (2023) 4164-4190
Abstract:
Perovskite/silicon tandems have smashed through the 30% efficiency barrier, which represents a promising step towards high efficiency solar modules. However, the processing used to fabricate high efficiency devices is not compatible with mass production. For this technology to be impactful in the urgent fight against climate change and be scalable to the multi-terawatt (TW) level, a shift in mindset is required when designing the silicon bottom cell. In this work, we outline the design requirements for the silicon cell, with a particular focus on the constraints imposed by industrial processing. In doing so, we discuss the type of silicon wafers used, the surface treatment, the most appropriate silicon cell architecture and the formation of metal contacts. Additionally, we frame this discussion in the context of multi-TW markets, which impose additional constraints on the processing relating to the sustainability of the materials used. The discussion herein will help to shape the design of future silicon solar cells for use in tandems, so that the LCOE of solar electricity can be driven to new lows.Architecture Optimization Dramatically Improves Reverse Bias Stability in Perovskite Solar Cells: A Role of Polymer Hole Transport Layers
(2023)