Block copolymer directed synthesis of mesoporous TiO2 for dye-sensitized solar cells
Soft Matter 5:1 (2009) 134-139
Abstract:
The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.Block copolymer directed synthesis of mesoporous TiO2 for dye-sensitized solar cells
SOFT MATTER 5:1 (2009) 134-139
A simple low temperature synthesis route for ZnO-MgO core-shell nanowires.
Nanotechnology 19:46 (2008) 465603
Abstract:
We report a hydrothermal synthesis method for MgO shell coatings directly onto the surface of ZnO nanowire arrays. The entire process can be carried out below 100 °C. The MgO shells are produced by the addition of 10 mM magnesium nitrate with 0.2 M sodium hydroxide in water, resulting in a shell thickness of up to 8 nm, verified by high resolution transmission electron microscopy. The viability of the MgO layer as a functional element of optoelectronic devices was tested on solid-state organic hole-transporter based dye-sensitized solar cells. Incorporation of the MgO shell into the solar cell resulted in substantive efficiency improvements of over 400% in comparison to the pristine ZnO nanowire based photovoltaics, indicating that electrons can efficiently tunnel through the 'insulating' MgO shell.Charge collection and pore filling in solid-state dye-sensitized solar cells.
Nanotechnology 19:42 (2008) 424003
Abstract:
The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process of TiO(2) mesopore infiltration with spiro-MeOTAD by examining the cross-sectional images of and performing photo-induced absorption spectroscopy on devices with a range of thickness, infiltrated with spiro-MeOTAD with a range of concentrations. We present our interpretation of the mechanism for material infiltration, and by improving the casting conditions demonstrate efficient charge collection through devices of over 7 µm in thickness. This investigation represents an improvement in our understanding of the limiting factors to the dye-sensitized solar cell. However, much work, focused on composite formation and improved kinetic competition, is required to realize the true potential of this concept.Charge collection and pore filling in solid-state dye-sensitized solar cells
Nanotechnology 19:42 (2008)