Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Alumina nanoparticle buffer-layer for lead-tin perovskite solar cells

Fundacio Scito (2023)

Authors:

Heon Jin, Henry Snaith
More details from the publisher

Material and Device Stability of Lead-Tin Perovskite Solar Cells

Fundacio Scito (2023)

Authors:

Florine Rombach, Henry Snaith
More details from the publisher

Towards Understanding Long-Range Charge Carrier Transport in 2D Perovkites

Fundacio Scito (2023)

Authors:

Manuel Kober-Czerny, Seongrok Seo, Suer Zhou, Silvia Motti, Akash Dasgupta, Joel Smith, Laura Herz, Henry Snaith
More details from the publisher

Visualizing Macroscopic Inhomogeneities in Perovskite Solar Cells

Fundacio Scito (2023)

Authors:

Akash Dasgupta, Suhas Mahesh, Henry Snaith
More details from the publisher

Thermal management enables stable perovskite nanocrystal light-emitting diodes with novel hole transport material

Small Wiley 19:45 (2023) 2303472

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do-Hoon Hwang, Bo Ram Lee

Abstract:

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA<sub>60</sub> -co-BFCA<sub>20</sub> -co-VFCA<sub>20</sub> ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI<sub>3</sub> perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet