Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Applicability of tin-iodide perovskites for hot-carrier PV devices – ultrafast pump-push-probe study of hot-carrier cooling dynamics

Fundacio Scito (2022)

Authors:

Aleksander Ulatowski, Michael Farrar, Henry Snaith, Michael Johnston, Laura Herz
More details from the publisher

Excellent Long-Range Charge-Carrier Mobility in 2D Perovskites

Fundacio Scito (2022)

Authors:

Manuel Kober-Czerny, Silvia G Motti, Philippe Holzhey, Bernard Wenger, Laura M Herz, Jongchul Lim, Henry Snaith
More details from the publisher

Intermediate-Phase Engineering via Dimethylammonium Cation Additive for Stable Perovskite Solar Cells

Fundacio Scito (2022)

Authors:

David McMeekin, Philippe Holzhey, Udo Bach, Henry Snaith
More details from the publisher

Understanding and Minimizing VOC Losses in All-Perovskite Tandem Photovoltaics

Fundacio Scito (2022)

Authors:

Jarla Thiesbrummel, Francisco Peña-Camargo, Kai Brinkmann, Martin Stolterfoht, Henry Snaith, Felix Lang
More details from the publisher

Excellent long-range charge-carrier mobility in 2D perovskites

Advanced Functional Materials Wiley 32:36 (2022) 2203064

Authors:

Manuel Kober-Czerny, Silvia Genaro Motti, Philippe Holzhey, Bernard Wenger, Jongchul Lim, Laura Maria Herz, Henry James Snaith

Abstract:

The use of layered, 2D perovskites can improve the stability of metal halide perovskite thin films and devices. However, the charge carrier transport properties in layered perovskites are still not fully understood. Here, the sum of the electron and hole mobilities (Σμ) in thin films of the 2D perovskite PEA2PbI4, through transient electronically contacted nanosecond-to-millisecond photoconductivity measurements, which are sensitive to long-time, long-range (micrometer length scale) transport processes is investigated. After careful analysis, accounting for both early-time recombination and the evolution of the exciton-to-free-carrier population, a long-range mobility of 8.0 +/− 0.6 cm2 (V s)–1, which is ten times greater than the long-range mobility of a comparable 3D material FA0.9Cs0.1PbI3 is determined. These values are compared to ultra-fast transient time-resolved THz photoconductivity measurements, which are sensitive to early-time, shorter-range (tens of nm length scale) mobilities. Mobilities of 8 and 45 cm2 (V s)–1 in the case of the PEA2PbI4 and FA0.9Cs0.1PbI3, respectively, are obtained. This previously unreported concurrence between the long-range and short-range mobility in a 2D material indicates that the polycrystalline thin films already have single-crystal-like qualities. Hence, their fundamental charge carrier transport properties should aid device performance.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet