1-nm linewidth room temperature single-photon source from optical microcavity-embedded CsPbI3 perovskite quantum dots
(2022)
Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells
Energy and Environmental Science Royal Society of Chemistry 15 (2021) 714-726
Abstract:
With power conversion efficiencies of perovskite-on-silicon and all-perovskite tandem solar cells increasing at rapid pace, wide bandgap (> 1.7 eV) metal-halide perovskites (MHPs) are becoming a major focus of academic and industrial photovoltaic research. Compared to their lower bandgap (< 1.6 eV) counterparts, these types of perovskites suffer from higher levels of non-radiative losses in both the bulk material and in device configurations, constraining their efficiencies far below their thermodynamic potential. In this work, we investigate the energy losses in methylammonium (MA) free high-Br-content widegap perovskites by using a combination of THz spectroscopy, steady-state and time-resolved photoluminescence, coupled with drift-diffusion simulations. The investigation of this system allows us to study charge-carrier recombination in these materials and devices in the absence of halide segregation due to the photostabilty of formamidinium-cesium based lead halide perovskites. We find that these perovskites are characterised by large non-radiative recombination losses in the bulk material and that the interfaces with transport layers in solar cell devices strongly limit their open-circuit voltage. In particular, we discover that the interface with the hole transport layer performs particularly poorly, in contrast to 1.6 eV bandgap MHPs which are generally limited by the interface with the electron-transport layer. To overcome these losses, we incorporate and investigate the recombination mechanisms present with perovskites treated with the ionic additive 1-butyl-1-methylpipiderinium tetrafluoroborate. We find that this additive not only improves the radiative efficiency of the bulk perovskite, but also reduces the non-radiative recombination at both the hole and electron transport layer interfaces of full photovoltaic devices. In addition to unravelling the beneficial effect of this specific treatment, we further optimise our solar cells by introducing an additional LiF interface treatment at the electron transport layer interface. Together these treatments enable MA-free 1.79 eV bandgap perovskite solar cells with open-circuit voltages of 1.22 V and power conversion efficiencies approaching 17 %, which is among the highest reported for this material system.Low-cost dopant-free carbazole enamine hole-transporting materials for thermally stable perovskite solar cells
Solar RRL Wiley 6:11 (2021) 2100984
Abstract:
Perovskite solar cells deliver high efficiencies, but are often made from high-cost bespoke chemicals, such as the archetypical hole-conductor, 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9-9′-spirobifluorene (spiro-OMeTAD). Herein, new charge-transporting carbazole-based enamine molecules are reported. The new hole conductors do not require chemical oxidation to reach high power conversion efficiencies (PCEs) when employed in n-type-intrinsic-p-type perovskite solar cells; thus, reducing the risk of moisture degrading the perovskite layer through the hydrophilicity of oxidizing additives that are typically used with conventional hole conductors. Devices made with these new undoped carbazole-based enamines achieve comparable PCEs to those employing doped spiro-OMeTAD, and greatly enhanced stability under 85 °C thermal aging; maintaining 83% of their peak efficiency after 1000 h, compared with spiro-OMeTAD-based devices that degrade to 26% of the peak PCE within 24 h. Furthermore, the carbazole-based enamines can be synthesized without the use of organometallic catalysts and complicated purification techniques, lowering the material cost by one order of magnitude compared with spiro-OMeTAD. As a result, we calculate that the overall manufacturing costs of future photovoltaic (PV) modules are reduced, making the levelized cost of electricity competitive with silicon PV modules.In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs
Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 9:47 (2021) 26750-26757
Device Performance of Emerging Photovoltaic Materials (Version 2)
Advanced Energy Materials Wiley 11:48 (2021)