Adduct-based p-doping of organic semiconductors
Nature Materials Nature Research 20 (2021) 1248-1254
Abstract:
Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells
Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 9:14 (2021) 9347-9353
Charge-carrier mobility and localization in semiconducting CU2AGBiI6 for photovoltaic applications
ACS Energy Letters American Chemical Society 6:5 (2021) 1729-1739
Abstract:
Lead-free silver–bismuth semiconductors have become increasingly popular materials for optoelectronic applications, building upon the success of lead halide perovskites. In these materials, charge-lattice couplings fundamentally determine charge transport, critically affecting device performance. In this study, we investigate the optoelectronic properties of the recently discovered lead-free semiconductor Cu2AgBiI6 using temperature-dependent photoluminescence, absorption, and optical-pump terahertz-probe spectroscopy. We report ultrafast charge-carrier localization effects, evident from sharp THz photoconductivity decays occurring within a few picoseconds after excitation and a rise in intensity with decreasing temperature of long-lived, highly Stokes-shifted photoluminescence. We conclude that charge carriers in Cu2AgBiI6 are subject to strong charge-lattice coupling. However, such small polarons still exhibit mobilities in excess of 1 cm2 V–1 s–1 at room temperature because of low energetic barriers to formation and transport. Together with a low exciton binding energy of ∼29 meV and a direct band gap near 2.1 eV, these findings highlight Cu2AgBiI6 as an attractive lead-free material for photovoltaic applications.Chemical Interaction at the MoO3/CH3NH3PbI3-xClx Interface.
ACS applied materials & interfaces 13:14 (2021) 17085-17092
Abstract:
The limited long-term stability of metal halide perovskite-based solar cells is a bottleneck in their drive toward widespread commercial adaptation. The organic hole-transport materials (HTMs) have been implicated in the degradation, and metal oxide layers are proposed as alternatives. One of the most prominent metal oxide HTM in organic photovoltaics is MoO3. However, the use of MoO3 as HTM in metal halide perovskite-based devices causes a severe solar cell deterioration. Thus, the formation of the MoO3/CH3NH3PbI3-xClx (MAPbI3-xClx) heterojunction is systematically studied by synchrotron-based hard X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Upon MoO3 deposition, significant chemical interaction is induced at the MoO3/MAPbI3-xClx interface: substoichiometric molybdenum oxide is present, and the perovskite decomposes in the proximity of the interface, leading to accumulation of PbI2 on the MoO3 cover layer. Furthermore, we find evidence for the formation of new compounds such as PbMoO4, PbN2O2, and PbO as a result of the MAPbI3-xClx decomposition and suggest chemical reaction pathways to describe the underlying mechanism. These findings suggest that the (direct) MoO3/MAPbI3-xClx interface may be inherently unstable. It provides an explanation for the low power conversion efficiencies of metal halide perovskite solar cells that use MoO3 as a hole-transport material and in which there is a direct contact between MoO3 and perovskite.Dynamic Effects and Hydrogen Bonding in Mixed-Halide Perovskite Solar Cell Absorbers.
The journal of physical chemistry letters 12:16 (2021) 3885-3890