Revealing the origin of voltage loss in mixed-halide perovskite solar cells
Energy and Environmental Science Royal Society of Chemistry 13 (2019) 258-267
Abstract:
The tunable bandgap of metal-halide perovskites has opened up the possibility of tandem solar cells with over 30% efficiency. Iodide-Bromide (I-Br) mixed-halide perovskites are crucial to achieve the optimum bandgap for such tandems. However, when the Br content is increased to widen the bandgap, cells fail to deliver the expected increase in open-circuit voltage (VOC). This loss in VOC has been attributed to photo-induced halide segregation. Here, we combine Fourier Transform Photocurrent Spectroscopy (FTPS) with detailed balance calculations to quantify the voltage loss expected from the halide segregation, providing a means to quantify the VOC losses arising from the formation of low bandgap iodide-rich phases during halide segregation. Our results indicate that, contrary to popular belief, halide segregation is not the dominant VOC loss mechanism in Br-rich wide bandgap cells. Rather, the loss is dominated by the relatively low initial radiative efficiency of the cells, which arises from both imperfections within the absorber layer, and at the perovskite/charge extraction layer heterojunctions. We thus identify that focussing on maximising the initial radiative efficiency of the mixed-halide films and devices is more important than attempting to suppress halide segeregation. Our results suggest that a VOC of up to 1.33 V is within reach for a 1.77 eV bandgap perovskite, even if halide segregation cannot be supressedCharge-Carrier Cooling and Polarization Memory Loss in Formamidinium Tin Triiodide
Fundacio Scito (2019)
Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells
Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 7:44 (2019) 25511-25520
Enhancing the charge extraction and stability of perovskite solar cells using strontium titanate (SrTiO3) electron transport layer
ACS Applied Energy Materials American Chemical Society 2:11 (2019) 8090-8097
Abstract:
Charge transport layers strongly influence the performance of perovskite solar cells (PSCs). To date, compact layers and mesoporous scaffolds of titanium dioxide have emerged as good electron transport layers (ETL), enabling record power conversion efficiencies (PCE). However, these ETLs require sintering above 400 °C, which excludes them from low-temperature applications such as flexible devices and silicon-heterojunction tandems. Furthermore, instability of TiO2 under prolonged exposure to sunlight appears to be a critical issue. Here, we present the promising characteristics of low-temperature processed strontium titanate (STO) as an ETL to realize PSCs with 19% PCE. STO is a wide bandgap transparent inorganic perovskite. Compared with other low-temperature processed interlayers, STO reduces the parasitic absorption in the ultraviolet and visible range, improves the electron transport, and greatly increases the stability of the devices, retaining ∼80% of their initial efficiency after 1000 h of constant white light illumination.Perovskite solar cells: materials, devices and industrialization
Fundacio Scito (2019)