Charge-carrier dynamics, mobilities and diffusion lengths of 2D-3D hybrid butylammonium-caesium-formamidinium lead halide perovskites
Abstract:
Perovskite solar cells (PSCs) have improved dramatically over the past decade, increasing in efficiency and gradually overcoming hurdles of temperature‐ and humidity‐induced instability. Materials that combine high charge‐carrier lifetimes and mobilities, strong absorption, and good crystallinity of 3D perovskites with the hydrophobic properties of 2D perovskites have become particularly promising candidates for use in solar cells. In order to fully understand the optoelectronic properties of these 2D–3D hybrid systems, the hybrid perovskite BAx(FA0.83Cs0.17)1‐xPb(I0.6Br0.4)3 is investigated across the composition range 0 ≤ x ≤ 0.8. Small amounts of butylammonium (BA) are found that help to improve crystallinity and appear to passivate grain boundaries, thus reducing trap‐mediated charge‐carrier recombination and enhancing charge‐carrier mobilities. Excessive amounts of BA lead to poor crystallinity and inhomogeneous film formation, greatly reducing effective charge‐carrier mobility. For low amounts of BA, the benevolent effects of reduced recombination and enhanced mobilities lead to charge‐carrier diffusion lengths up to 7.7 µm for x = 0.167. These measurements pave the way for highly efficient, highly stable PSCs and other optoelectronic devices based on 2D–3D hybrid materials.Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6
Abstract:
Double perovskite crystals such as Cs2AgBiBr6 are expected to overcome the limitation of classic hybrid organic–inorganic perovskite crystals related to the presence of lead and the lack of structural stability. Perovskites are ionic crystals in which the carriers are expected to strongly couple to lattice vibrations. In this work we demonstrate that the photoluminescence (PL) emission in Cs2AgBiBr6 is strongly influenced by the strong electron–phonon coupling. Combining photoluminescence excitation (PLE) and Raman spectroscopy we show that the PL emission is related to a color center rather than a band-to-band transition. The broadening and the Stokes shift of the PL emission from Cs2AgBiBr6 is well explained using a Franck–Condon model with a Huang–Rhys factor of S = 11.7 indicating a strong electron–phonon interaction in this material.