Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Evidence and implications for exciton dissociation in lead halide perovskites

EPJ Web of Conferences EDP Sciences 205 (2019) 06018

Authors:

Vandana Tiwari, Hong-Guang Duan, Ajay Jha, Pabitra K Nayak, Michael Thorwart, Henry J Snaith, RJ Dwayne Miller
More details from the publisher

Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals

Journal of the American Chemical Society American Chemical Society 140:2 (2018) 574-577

Authors:

Pabitra Nayak, M Sendner, Bernard Wenger, Zhiping Wang, K Sharma, Alexandra Ramadan, R Lovrinčić, A Pucci, PK Madhu, Henry Snaith

Abstract:

Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.
More details from the publisher
Details from ORA
More details
More details

Solubilization of carbon nanotubes with ethylene-vinyl acetate for solution-processed conductive films and charge extraction layers in perovskite solar cells

ACS Applied Materials and Interfaces American Chemical Society 11:1 (2018) 1185-1191

Authors:

Giulio Mazzotta, Markus Dollmann, Habisreutinger, Greyson Christoforo, Zhiping Wang, Henry Snaith, Moritz Riede, Robin Nicholas

Abstract:

Carbon nanotube (CNT) solubilization via non-covalent wrapping of conjugated semiconducting polymers is a common technique used to produce stable dispersions for depositing CNTs from solution. Here, we report the use of a non-conjugated insulating polymer, ethylene vinyl acetate (EVA), to disperse multi- and single-walled CNTs (MWCNT and SWCNT) in organic solvents. We demonstrate that despite the insulating nature of the EVA, we can produce semitransparent films with conductivities of up to 34 S/cm. We show, using photoluminescence spectroscopy, that the EVA strongly binds to individual CNTs, thus making them soluble, preventing aggregation, and facilitating the deposition of high-quality films. To prove the good electronic properties of this composite, we have fabricated perovskite solar cells using EVA/SWCNTs and EVA/MWCNTs as selective hole contact, obtaining power conversion efficiencies of up to 17.1%, demonstrating that the insulating polymer does not prevent the charge transfer from the active material to the CNTs.
More details from the publisher
Details from ORA
More details
More details
More details

Elucidating the long-range charge carrier mobility in metal halide perovskite thin films

(2018)

Authors:

Jongchul Lim, Maximilian T Hoerantner, Nobuya Sakai, James M Ball, Suhas Mahesh, Nakita K Noel, Yen-Hung Lin, Jay B Patel, David P McMeekin, Michael B Johnston, Bernard Wenger, Henry J Snaith
More details from the publisher
Details from ArXiV

Elucidating the long-range charge carrier mobility in metal halide perovskite thin films

Energy and Environmental Science Royal Society of Chemistry 12:1 (2018) 169-176

Authors:

Jongchul Lim, M Hoerantner, Nobuya Sakai, James M Ball, Suhas Mahesh, Nakita K Noel, Yen-Hung Lin, Jay B Patel, David P McMeekin, Michael B Johnston, Bernard Wenger, Henry J Snaith

Abstract:

Many optoelectronic properties have been reported for lead halide perovskite polycrystalline films. However, ambiguities in the evaluation of these properties remain, especially for long-range lateral charge transport, where ionic conduction can complicate interpretation of data. Here we demonstrate a new technique to measure the long-range charge carrier mobility in such materials. We combine quasi-steady-state photo-conductivity measurements (electrical probe) with photo-induced transmission and reflection measurements (optical probe) to simultaneously evaluate the conductivity and charge carrier density. With this knowledge we determine the lateral mobility to be ∼2 cm2 V−1 s−1 for CH3NH3PbI3 (MAPbI3) polycrystalline perovskite films prepared from the acetonitrile/methylamine solvent system. Furthermore, we present significant differences in long-range charge carrier mobilities, from 2.2 to 0.2 cm2 V−1 s−1, between films of contemporary perovskite compositions prepared via different fabrication processes, including solution and vapour phase deposition techniques. Arguably, our work provides the first accurate evaluation of the long-range lateral charge carrier mobility in lead halide perovskite films, with charge carrier density in the range typically achieved under photovoltaic operation.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet